B.Tech. Civil (Construction Management) I
B.Tech. Civil (Water Resources Engineering) /
B.Tech. (Aerospace Engineering) / BTCLEVI / BTMEVI / BTELVI / BTECVI / BTCSVI

Term-End Examination
पロ952 June, 2019

ET-101(A) : MATHEMATICS - I

Time: 3 hours
Maximum Marks : 70
Note: All questions are compulsory. Use of scientific calculator is allowed.

1. Answer any five of the following :
(a) Evaluate :

$$
\lim _{x \rightarrow 2} \frac{x^{2}-3 x+2}{x^{2}-6 x+8}
$$

(b) If $\sin y=x \sin (a+y)$, prove that

$$
\frac{d y}{d x}=\frac{\sin ^{2}(a+y)}{\sin a} .
$$

(c) Find the equation of the tangent and normal to the curve $y=x^{3}-3 x^{2}-x+5$ at the point where $\mathrm{x}=3$.
(d) Calculate the radius and the height of a right circular cylinder of maximum volume which can be cut from a sphere of radius R.
(e) Verify Rolle's theorem for the function

$$
f(x)=x^{3}+5 x^{2}-6 x,
$$

on the interval $(0,1)$.
(f) If $x=r \cos \theta, y=r \sin \theta$;

$$
\text { evaluate } \frac{\partial(\mathrm{x}, \mathrm{y})}{\partial(\mathrm{r}, \theta)} \text {, and } \frac{\partial(\mathrm{r}, \theta)}{\partial(\mathrm{x}, \mathrm{y})}
$$

2. Answer any four of the following :
(a) Evaluate any one of the following :
(i) $\int \frac{1}{16+\mathrm{x}^{2}} \mathrm{dx}$
(ii) $\int \frac{\cos x-\cos 2 x}{1-\cos x} d x$
(b) Evaluate any one of the following:
(i) $\int_{1}^{\sqrt{3}} \frac{1}{1+\mathrm{x}^{2}} \mathrm{dx}$
(ii) $\int \sin ^{5} \mathrm{x} \cos ^{4} \mathrm{xdx}$
(c) Evaluate :

$$
\int_{1}^{2} x^{2} \log x d x
$$

(d) Find the area bounded by the x -axis and the curve $y=1-x^{2}$.
(e) Prove that

$$
\int_{0}^{\pi / 2} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x=\frac{\pi}{4} .
$$

(f) The velocity of a train which starts from rest is given by the following table, the time being reckoned in minutes from the start and speed in kilometres per hour.

Time (in minutes)	Speed $(\mathrm{km} / \mathrm{hr}$.)
2	10
4	18
6	25
8	29
10	32
12	20
14	11
16	5
18	2
20	0

Estimate approximately by Simpson's $\frac{1}{3}$ rd rule, the total distance covered in 20 minutes.
3. Answer any four of the following :
(a) Show that the vector $2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}$, $\hat{\mathbf{i}}-3 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}$ and $3 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}-4 \hat{\mathbf{k}}$ form the sides of a right angled-triangle.
(b) If $\overrightarrow{\mathbf{A}}=3 \hat{\mathbf{i}}-\hat{\mathbf{j}}-4 \hat{\mathbf{k}}, \overrightarrow{\mathbf{B}}=-2 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}$, and $\overrightarrow{\mathbf{C}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}}$, find the unit vector parallel to $3 \overrightarrow{\mathbf{A}}-2 \overrightarrow{\mathbf{B}}+4 \overrightarrow{\mathbf{C}}$.
(c) A particle acted upon by constant forces $2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}, \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$, and $3 \hat{\mathbf{i}}+\hat{\mathbf{j}}+5 \hat{\mathbf{k}}$ is displaced from the point $\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$ to point $6 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+\hat{\mathbf{k}}$. Find the work done.
(d) Find grad ϕ when ϕ is given by

$$
\phi=3 x^{2} y-y^{3} z^{2}
$$

at the point $(1,-2,-1)$.
(e) If $\overrightarrow{\mathbf{r}}=x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}}$,
show that
(i) $\operatorname{div} \overrightarrow{\mathbf{r}}=3$, and
(ii) curl $\overrightarrow{\mathbf{r}}=\overrightarrow{0}$.
(f) Show that the vector

$$
\overrightarrow{\mathbf{v}}=(x+3 y) \hat{\mathbf{i}}+(y-3 z) \hat{\mathbf{j}}+(x-2 z) \hat{\mathbf{k}}
$$

is solenoidal.
4. Answer any six of the following :
(a) Find $\mathrm{x}, \mathrm{y}, \mathrm{z}$ and w if

$$
3\left[\begin{array}{cc}
x & y \\
z & w
\end{array}\right]=\left[\begin{array}{cc}
x & 6 \\
-1 & 2 w
\end{array}\right]+\left[\begin{array}{cc}
4 & x+y \\
z+w & 3
\end{array}\right]
$$

(b) If $\mathrm{A}+\mathrm{B}=\left[\begin{array}{cc}1 & -1 \\ 3 & 0\end{array}\right]$ and $\mathrm{A}-\mathrm{B}=\left[\begin{array}{ll}3 & 1 \\ 1 & 4\end{array}\right]$,
calculate the product $A B$.
(c) If

$$
A=\left[\begin{array}{ccc}
3 & -3 & 4 \\
2 & -3 & 4 \\
0 & -1 & 1
\end{array}\right] \text {, find } A^{-1}
$$

(d) Show that

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] } \\
= & {\left[\begin{array}{cc}
1 & -\tan \frac{\theta}{2} \\
\tan \frac{\theta}{2} & 1
\end{array}\right]\left[\begin{array}{cc}
1 & \tan \frac{\theta}{2} \\
-\tan \frac{\theta}{2} & 1
\end{array}\right]^{-1} }
\end{aligned}
$$

(e) Find the rank of the following matrix :
$A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & 4 & 7 \\ 3 & 6 & 10\end{array}\right]$
(f) Solve the following system of equations by Cramer's rule.

$$
\begin{aligned}
& x+y+z=6 \\
& x-y+2 z=5 \\
& 3 x+y+z=8
\end{aligned}
$$

(g) If

$$
A=\left[\begin{array}{ccc}
-1 & 2+i & 5-3 i \\
2-i & 7 & 5 i \\
5+3 i & -5 i & 2
\end{array}\right]
$$

show that A is a Hermitian matrix.
(h) Find the eigenvalues of the matrix

$$
A=\left[\begin{array}{ccc}
-2 & 2 & -3 \\
2 & 1 & -6 \\
-1 & -2 & 0
\end{array}\right]
$$

