BICE-022

B.Tech. CIVIL ENGINEERING (BTCLEVI)

Term-End Examination

June, 2019

BICE-022 : COMPUTER APPLICATIONS IN CIVIL ENGINEERING

Time : 3 hours

Maximum Marks : 70

- Note: (i) Attempt any seven questions.
 - (ii) Scientific calculator is allowed.
 - (iii) All questions carry equal marks.
- 1. Define normalized floating point representation 10 of numbers and round off errors in representation. Find the sum of 0.123×10^3 and 0.456×10^2 and write the result in three digit mantissa form.
- 2. Find a real root of the equation $x \log_{10} x = 1.2$ by 10 Regula - Falci method correct to four decimal places.
- 3. Solve the following system of equations by the LU 10 decomposition method : 2x + 3y + z = 9x + 2y + 3z = 63x + y + 2z = 8
- 4. Use Gauss' forward formula to find a polynomial 10 of degree four which takes the following values of the function f(x):

1

					4	-
f(x)	:	1	-1	1	-1	1

P.T.O.

5. Use Lagrange's formula to find f(6) from the 10 following table :

x	c 2 5		7	10	12	
f(x)	18	180	448	1210	2028	

6. Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$ at $x=6$ gives

at x = 6 given that

				6.0			7.5
y	9.69	12.90	16.71	21.18	26.37	32.34	39.15

7. (a) Use Simpson's
$$\frac{1}{3}$$
 rule to find $\int_{0}^{6} \frac{dx}{1+x^2}$ by 5

dividing the interval of integration into 6 equal parts.

(b) Evaluate
$$\int_{0}^{6} \frac{e^{x}}{1+x} dx$$
 using Simpson's 5

 $\frac{3}{8}$ rule by dividing the interval of integration into 6 equal parts.

- 8. Solve the equation $\frac{dy}{dx} = x + y$ with initial 10 condition y(0) = 1 by Runge - Kutta rule of fourth order, from x = 0 to x = 0.2 with h = 0.1
- **9.** Discuss the following :

4x2¹/₂=10

10

- (a) Standard form of Linear Programming Problem
- (b) Unimodal Functions
- (c) Fibonacci Numbers
- (d) One Dimensional Minimization Problem
- 10. Discuss the Fibonacci Method and Golden Section 10 Method and write the difference between these two methods.

BICE-022