B.Tech. CIVIL ENGINEERING (BTCLEVI)

Term-End Examination

June, 2019

BICE-022 : COMPUTER APPLICATIONS IN CIVIL ENGINEERING

Time : $\mathbf{3}$ hours
Maximum Marks : 70
Note: (i) Attempt any seven questions.
(ii) Scientific calculator is allowed.
(iii) All questions carry equal marks.

1. Define normalized floating point representation $\mathbf{1 0}$ of numbers and round off errors in representation. Find the sum of 0.123×10^{3} and 0.456×10^{2} and write the result in three digit mantissa form.
2. Find a real root of the equation $x \log _{10} x=1.2$ by $\quad 10$ Regula - Falci method correct to four decimal places.
3. Solve the following system of equations by the LU $\mathbf{1 0}$ decomposition method :
$2 x+3 y+z=9$
$x+2 y+3 z=6$
$3 x+y+2 z=8$
4. Use Gauss' forward formula to find a polynomial $\mathbf{1 0}$ of degree four which takes the following values of the function $f(x)$:

x	$:$	1	2	3	4	5
$f(x)$	$:$	1	-1	1	-1	1

5. Use Lagrange's formula to find $f(6)$ from the following table :

x	2	5	7	10	12
$f(x)$	18	180	448	1210	2028

6. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ at $x=6$ given that $\quad 10$

x	4.5	5.0	5.5	6.0	6.5	7.0	7.5
y	9.69	12.90	16.71	21.18	26.37	32.34	39.15

7. (a) Use Simpson's $\frac{1}{3}$ rule to find $\int_{0}^{6} \frac{\mathrm{~d} x}{1+x^{2}}$ by 5 dividing the interval of integration into 6 equal parts.
(b) Evaluate $\int_{0}^{6} \frac{\mathrm{e}^{x}}{1+x} \mathrm{~d} x$ using Simpson's 5
$\frac{3}{8}$ rule by dividing the interval of integration into 6 equal parts.
8. Solve the equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=x+y$ with initial $\mathbf{1 0}$ condition $y(0)=1$ by Runge - Kutta rule of fourth order, from $x=0$ to $x=0.2$ with $\mathrm{h}=0.1$
9. Discuss the following :

$$
4 \times 2^{1 / 2}=10
$$

(a) Standard form of Linear Programming Problem
(b) Unimodal Functions
(c) Fibonacci Numbers
(d) One Dimensional Minimization Problem
10. Discuss the Fibonacci Method and Golden Section 10
Method and write the difference between these
two methods.

