B.Tech. - VIEP - Computer Science \& Engg. (BTCSVI) / B.Tech. Electronics and Communication Engg. (BTECVI) / B.Tech. Electrical Engg. (BTELVI)

DIESS
 Term-End Examination

June, 2019

BICE-007 : MATHEMATICS-III

Time : 3 hours
Maximum Marks : 70
Note: All questions are compulsory. Attempt any two parts from each question. Use of non-programmable scientific calculator is permitted. All questions are carrying equal marks. Statistical tables may be provided.

1. (a) Write Cauchy's theorem, and verify it by integrating e^{iz} along the boundary of the triangle, having vertices at points $1+i$, $-1+\mathrm{i}$ and - 1 - i .
(b) Find Taylor and Laurent series of

$$
f(z)=\frac{3-2 z}{z^{2}-3 z+2} \text {, when }
$$

(i) $1<\mid$ z $\mid<2$
(ii) $|z|>2$
(c) Let $\mathrm{f}(\mathrm{z})$ be analytic function in a simply connected domain D. Then show that for any point z_{0} in D and any simple closed path C in D that encloses z_{0}

$$
\oint_{\mathrm{C}} \frac{\mathrm{f}(\mathrm{z})}{\mathrm{z}-\mathrm{z}_{0}} \mathrm{dz}=2 \pi \mathrm{i} \mathrm{f}\left(\mathrm{z}_{0}\right) . \quad 2 \times 7=14
$$

2. (a) Calculate the first four central moments of the following distribution about the mean :

$$
\begin{array}{lllllllllll}
\mathrm{X}: & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
$$

Frequency of

$$
\begin{array}{llllllllll}
\text { of } \\
\mathrm{X}: & 1 & 8 & 28 & 56 & 70 & 56 & 28 & 8 & 1
\end{array}
$$

State whether the distribution is Leptokurtic or Platykurtic.
(b) Using the method of Least Squares, determine the curve $y=a x+b x^{2}$ that best fits the following data :

$\mathrm{X}:$	1	2	3	4	5
$\mathrm{Y}:$	$1 \cdot 8$	$5 \cdot 1$	$8 \cdot 9$	$14 \cdot 1$	$19 \cdot 8$

(c) A five digit number is formed by using $0,1,2,3,4$ without repetition. Find the probability that the number is divisible by 4 .
$2 \times 7=14$
3. (a) Determine 95% confidence interval for the mean ' μ ' of a normal population with variance $\sigma^{2}=16$, using a sample of size 200 with mean 74.81.
(b) In a production of iron rods, let the diameter (X) be normally distributed with mean 2 inch and standard deviation (σ) of 0.008 inch. What percentage of defectives can we expect, if we set tolerance limits at 2 ± 0.02 inch ?
(c) Write short notes on any two of the following :
(i) Statistical Quality Control Methods
(ii) Control Charts
(iii) ANOVA $2 \times 7=14$
4. (a) Using Newton Raphson method, find the real roots of the equation $3 x-\cos x+1=0$ between 0 and 1 , correct up to two decimal places.
(b) Use Lagrange's interpolation formula to fit a polynomial to the data given below :

$$
\begin{array}{rcccc}
\mathrm{X}: & -1 & 0 & 2 & 3 \\
\mathrm{f}(\mathrm{X}): & -8 & 3 & 1 & 12
\end{array}
$$

Hence find the value of $f(1)$.
(c) Find root of equation $\mathrm{xe}^{\mathrm{x}}-1=0$, correct to three decimal places, using Bisection method. $2 \times 7=14$
5. (a) Solve the following system of equations by using Gauss-Seidel iteration method :

$$
\begin{aligned}
& 4 X+Y+2 Z=-1 \\
& X+5 Y+Z=5 \\
& 2 X+Y+4 Z=3
\end{aligned}
$$

(b) Evaluate the integral $I=\int_{0}^{1} e^{x^{2}} d x$ by Simpson's $\frac{1}{3}$ rd and $\frac{3}{8}$ th rule. Compare the results. Take $\mathrm{h}=0 \cdot 2$.
(c) Solve the Ordinary Differential Equation

$$
\frac{d y}{d x}=x(y-x), y(z)=3,
$$

using Runge-Kutta's method of fourth order (take step size $h=0 \cdot 1$). Hence find value of $\mathrm{y}(2 \cdot 2)$.

