No of Printed Pages: 4

BAS-013

B.Tech. AEROSPACE ENGINEERING (BTAE)

Term-End Examination, 2019

BAS-013: PROPULSION-I

Time: 3 Hours

Maximum Marks: 70

Note: Attempt **any seven questions** out of nine questions. **All** questions carry **equal** marks. Use the scientific calculator is permitted.

1. Explain the following:

[5×2=10]

- (a) Clausius Inequality
- (b) Zeroth law of thermodynamics
- (c) Latent heat
- (d) Degree of sub-cooling
- (e) Indicator diagram
- 2. Write notes on the following:

[2×5=10]

(a) Diesel cycle

- (b) Brayton cycle
- 3. (a) A mass of 0.25 kg of an ideal gas has a pressure of 300 Kpa, a temperature of 80° C and a volume of 0.07m³. The gas undergoes an irrevessible adiabatic process to a final pressure of 300 Kpa and a final volume of 0.1m³ during which the work done on gas is 25 kJ. Evaluate Cp and Cv of the gas and increase in entropy of the gas. [6]
 - (b) What do you understand by 'available energy and availability'? [4]
- (a) Distinguish between C.I. engine and S.I. engine.
 [5]
 - (b) Define the second law efficiency. How is it different from the first law efficiency. [5]
- 5. Explain the following terms briefly: $[10 \times 1 = 10]$
 - (a) Saturation state
 - (b) Degree of super heat
 - (c) Air standard efficiency

		(e)	Dead state		
		(f)	Entropy		
		(g)	Degree of sub-cooling		
		(h)	Available energy		
		(i)	Energy		
		(j)	Useful work		
	6.		ubrication of reciprocating engine is in various lubricating systems.	required [2+8=1	
	•		in Dual cycle with the help of a neat diagram and the expression for efficiency of Dual cycle.		
				[3+7=1	0]
	8.	(a)	Discuss the working of a simple carbuthe help of a neat sketch.		ith 3]
		(b)	A cyclic heat engine operates between temperature of 900°C and a sink of 50	n a sourd 0°C. Wh	ce at
			is the least rate of heat rejection pe output of the engine?	r KVV n [4	
BAS-013		13	(3)	₽ΤС) 1

(d)

Dryness fraction

9. In a gas turbine plant, working on the Brayton cycle with a regenerator of 75% effectiveness, the air at the inlet to the compressor is at 0.1 MPa, 30°C, the pressure ratio is 6 and maximum cycle temperature is 900° C. If the turbine and compressor have each an efficiency of 80%, find the percentage increase in the cycle efficiency due to regeneration. [10]