No. of Printed Pages: 7

BAS-002

B. TECH. IN AEROSPACE ENGINEERING (BTAE) Term-End Examination June, 2019

BAS-002: APPLIED CHEMISTRY

Time: 3 Hours Maximum Marks: 70

Note: Answer any seven questions. All questions carry equal marks. Use of scientific calculator is permitted.

- 1. Explain the following giving reasons: 2 each
 - (a) Usually the first ionization energy of elements increases with the atomic number of elements in a period of the periodic table.
 - (b) Fluorine has lower electron affinity than chlorine.

- (c) Ionization energy decrease from Be to B and Mg to Al.
- (d) Diamond is an insulator while graphite conducts electricity.
- (e) All gases are mono-atomic.
- 2. (a) What do you understand by isomers? Write the structures and IUPAC names of the isomers of C_5H_{10} .
 - (b) What is the difference between a Galvanic cell and a Concentration cell?
- 3. (a) Explain in brief any three of the following terms with illustrations:
 - (i) Structural isomerism
 - (ii) Stereoisomerism
 - (iii) Position isomerism
 - (iv) Tautomerism
 - (b) Write down the equations for the manufacture of HNO₃ from NH₃ by Ostwald's process.

4.	(a)	Explain how methane is used in the								
		synthesis of ammonia and methanol. 6								
	(b)	(i) What is meant by cross linking of the								
•		chains?								
		(ii) Why are silicon polymers important								
	•	macromolecules?								
5.	(a)	Choose the correct alternatives from the								
elves given at the end of each statement: 5										
		(i) The size of the atom in Thompson's								
		model is the atomic size in								
		Rutherford's model.								
		(much greater than; no different from;								
		much less than)								
		(ii) In the ground state of								
	•	electrons are in stable equilibrium,								
		while in electrons always								
	.•	experience a net force.								
		(Thompson's model, Rutherford's								
		model)								

(A-8) P. T. O.

(iii)	A	classical	atom	based	on	•••••	is
doomed to collapse.							

(Thompson's model, Rutherford's model)

(iv) An atom has a nearly continuous mass distribution in but has a highly non-uniform mass distribution in

(Thompson's model, Rutherford's model)

(Rutherford's model; both the models)

(b) The ground state energy of hydrogen atom is - 13.6 eV. What are the kinetic energy and potential energy of the electron in this state?

6.	(a)	Write the electronic configurat				of	the
		follow	ing e	lements (a	ny <i>five</i>):		5

- (i) Al (13)
- (ii) Cl (17)
- (iii) Fe (26)
- (iv) Ba (56)
- (v) Pt (78)
- (vi) Hg (80)
- (b) What are fuel cells? How are these better than the conventional electrochemical cells?
- 7. The reaction for the preparation of ammonia by
 Haber's process is given as: 5, 5

$$N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$$

 (i) Write the expressions for K_p and K_c for the above equilibrium reaction.

- (ii) Establish a relationship between K_pand K_c for the same.
- 8. (a) Differentiate between primary cells and secondary cells.
 - (b) Define the following: 5
 - (i) Solvent extraction
 - (ii) Condensation polymers
 - (iii) Multiple bonding
 - (iv) Galvanic corrosion
 - (v) Chiral centre
- 9. (a) What are the various sources available for the production of SO₂? Give equations for each of these.
 - (b) A photon of wavelength 3310 Å falls on a photocathode and an electron of energy 3×10^{-19} J is ejected. If the wavelength of the incident photon is changed to 5000 Å,

the energy of the ejected electron is 7.91×10^{-20} J. Calculate the value of Planck's constant and threshold wavelength of the photon.