00641

B.Tech. AEROSPACE ENGINEERING (BTAE)

Term-End Examination

June, 2019

BAS-001 : APPLIED PHYSICS

Time : 3 hoursNote : (i)Question 1 is compulsory.		nurs Maximum Marks :	Maximum Marks : 70	
		Question 1 is compulsory.		
	(ii)	Attempt any five questions from Q. 2 to Q. 9.		
	(iii)	Assume missing data if any.		
	(iv)	Use of scientific calculator is permitted.		
1.	(a)	Define periodic motion and frequency.	3	
	(b)	Equation of a particle executing SHM is $y=5 \sin 20\pi t$, where y is in cm and t in sec. Calculate maximum speed and acceleration of a particle.	3	
	(c)	Define wavelength and phase.	3	
	(d)	The equation of a progressive wave is given by $y=5 \sin (10 \pi t - 0.1\pi x)$ when x and y are in metre and 't' is in sec. Calculate (i) Amplitude (ii) Frequency (iii) Time period and velocity of the wave.	3	
	(e)	Define beats.	3	
	(f)	A parallel beam of light ($\lambda = 5890$ Å) is incident on a thin glass plate ($\mu = 1.5$) such that the angle of refraction is 60°. Calculate the smallest thickness of the plate which will appear dark by reflection.	3	

(g) In a Newton's rings experiment, the diameter of the 5th ring was 0.336 cm and the diameter of the 15th ring = 0.590 cm. Find the radius of curvature of the plano-convex lens, if the wavelength of light used is 5890 Å.

3

3

3

- (h) How many orders will be visible if the wavelength of light is 5000 Å and the number of lines per inch on the grating is 2620 ?
- (i) Define Malus law.

(j) Define Heisenberg uncertainity principle.

(k) An electron has a speed of 600 m/s with an accuracy of 0.005%. Calculate the certainity with which we can locate the position of electron $h = 6.6 \times 10^{-34}$ Js and $m = 9.1 \times 10^{31}$ kg.

(l) Define Zeemen & Paschen-Back effect. 3

- (m) Define induced absorption & population 3 inversion.
- (n) A rod of 1 metre long is moving along its length with a velocity of 0.6c. Calculate its length as it appears to an observer in the stationary reference frame of the earth.
- (o) The mean life time of π meson is $2x10^{-8}$ s. **3** Calculate mean life of meson moving with a velocity of 0.8c.
- Obtain the differential equation of motion in the case of simple pendulum. Also find the frequency and period of motion.

BAS-001

2

3. Derive an expression for the velocity of transverse wave in a stretched string.

5

4. Prove that excess pressure 'P' and particle velocity 5 'u' in a plane of longitudinal wave in a medium of volume elasticity ' ϵ ' are related by $P = \frac{Eu}{2}$,

where 'v' is the speed of wave.

- 5. Derive an expression for the interference due to 5 reflected light and what are the conditions required to achieve bright and dark fringes.
- Explain in detail the construction and working of 5 Ruby Laser with a neat diagram.
- Describe briefly the experiment of G.P. Thomson 5 on the diffraction of electrons and explain briefly the results obtained.
- 8. Discuss in detail length contraction and time 5 dealation.
- 9. A single electron revolves around a stationary 5 nucleus of charge + Ze where 'Z' is a constant and 'e' is the magnitude of the electronic charge. It requires 47.2 eV to excite the electron from second Bohr orbit to the third Bohr orbit. Find.
 - (a) The value of 'Z'.
 - (b) The energy required to excite the electron from third to fourth Bohr orbit.
 - (c) The wavelength of electromagnetic radiation required to remove the electron from first Bohr's orbit to infinity.