BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination

01057

June, 2016

ELECTIVE COURSE: MATHEMATICS
MTE-13: DISCRETE MATHEMATICS

Time: 2 hours

Maximum Marks: 50

(Weightage: 70%)

Note: Question no. 1 is compulsory. Answer any four questions from questions no. 2 to 7. Use of calculators is not allowed.

- 1. Which of the following statements are *true* and which are *false*? Justify your answer. $5\times 2=10$
 - (a) The statement If $x^2 + y^2 = 0$ for any two positive integers x and y, then xy is prime, is true.
 - (b) For any graph G, $\Delta(G) = \chi(G)$.
 - (c) The recurrence relation $a_n = 4 a_{n-1} + n^3$ is of order 1 and degree 3.
 - (d) The number of possible outcomes obtained by casting a die 9 times is C(9, 7).
 - (e) There is a graph G with degree sequence {1, 2, 3, 3, 4, 5}.

Prove that the following statements are 2. (a) equivalent for a graph G: 4 (i) G is a tree. (ii) Any two vertices in G are connected by a unique path. Verify whether $[p \rightarrow (p \lor \sim q)] \rightarrow \sim p$ is a **(b)** tautology using a truth table. 3 Using the principle of inclusion-exclusion (c) find the number of integer solutions of the equation x + y + z = 18, with $0 < x \le 6, 0 < y \le 7, 0 < z \le 8.$ 3 3. (a) Show, by Mathematical induction that, $(n+1)^2 < 2n^2, \forall n \ge 3.$ 4 (b) Solve the recurrence relation $a_n - 10 a_{n-1} + 31 a_{n-2} - 30 a_{n-3} = 0, n \ge 3$ with the initial conditions $a_0 = 0$, $a_1 = 1$, $a_2 = -1$. 4 There are 38 different time periods during (c) which classes at a university can be scheduled. If there are 677 different classes, how many different rooms will be needed? 2 (a) If a five digit number is chosen at random, what is the probability that the product of digits is 28? 3 Define the hypercube Q_n . (b) (i) (ii) Draw Q2. (iii) Is Q₃ Eulerian? Justify your answer. Is Q₃ Hamiltonian? Justify your (iv) answer. 4

(c) Solve the recurrence relation,

$$a_n = a_{n-1} + 3(n-1), \ a_0 = 1.$$

3

5

5. (a) Check the validity of the following argument:

If I do not get 96%, I will not get a scholarship.

If I work hard, I will get 96%.

I worked hard.

Therefore I got a scholarship.

(b) Consider the following graphs:

- (i) Is G connected? If not, show that G is a disjoint union of its components.
- (ii) Find the length of the longest path in G.
- (iii) Give the longest cycle in G.
- (iv) Is G bipartite? Justify.

5

- 6. (a) Using the generating functions approach, find the number of integer solutions to the linear equation, $x_1 + x_2 + x_3 = n$, where $1 \le x_1 \le 3$, $-1 \le x_2 \le 1$ and $x_3 \ge 3$.
 - (b) Show that the number of partitions of 10 into distinct parts (integers) is equal to the number of partitions of 10 into odd parts.

6

4

5

3

- 7. (a) An English word is called a palindrome if it reads the same whether read from left to right or from right to left, ROTOR, for example. Let a_n be the number of English words of length n, not necessarily meaningful, which are palindromes. We consider a single letter a palindrome.
 - (i) What are a_1 and a_2 ?
 - (ii) Set up a recurrence for a_n.
 - (iii) Check that

$$a_n = \left(\sqrt{26} \right)^n \left\{ \left(\frac{1 + \sqrt{26}}{2} \right) + (-1)^n \left(\frac{1 - \sqrt{26}}{2} \right) \right\}$$

is a solution to the recurrence.

- (iv) Find a_3 using the above expression for a_n .
- (b) Express the polynomial $x^4 + x^2 + x$ in terms of the factorial polynomials $[x]_4$, $[x]_3$, etc.
- (c) Show that $K_{100, 101}$ is not Hamiltonian. 2

MTE-13

स्नातक उपाधि कार्यक्रम (बी.डी.पी.) सत्रांत परीक्षा जन, 2016

ऐच्छिक पाठ्यक्रम : गणित एम.टी.ई.-13 : विविक्त गणित

समय : 2 घण्टे

अधिकतम अंक : 50

(कुल का : 70%)

नोट: प्रश्न सं. 1 करना अनिवार्य है । प्रश्न सं. 2 से 7 में से कोई चार प्रश्न कीजिए । कैल्कुलेटरों के प्रयोग करने की अनुमित नहीं है ।

- निम्नलिखित में से कौन-से कथन सत्य हैं और कौन-से असत्य ? अपने उत्तर की पुष्टि कीजिए । 5×2=10
 - (क) कथन 'यदि किन्हीं दो धन पूर्णांकों x और y के लिए $x^2 + y^2 = 0$, तब xy अभाज्य है', सत्य है ।
 - (ख) किसी भी ग्राफ़ G के लिए $\Delta(G) = \chi(G)$.
 - (ग) पुनरावृत्ति सम्बन्ध $a_n = 4 \ a_{n-1} + n^3$ कोटि 1 और घात 3 का है ।
 - (घ) एक पाँसे को 9 बार डालने से प्राप्त संभावित परिणामों की संख्या C(9, 7) है।
 - (ङ) कोटि अनुक्रम {1, 2, 3, 3, 4, 5} वाला ग्राफ़ G हो सकता है।

2.	(क)	•	
		तुल्य हैं:	4
		(i) G एक वृक्ष है।	
		(ii) G में कोई दो शीर्ष ठीक एक पथ द्वारा संबद्ध होते हैं	١
	(ख)	सत्य सारणी द्वारा सत्यापित कीजिए कि क्या	
		$[p \rightarrow (p \lor \sim q)] \rightarrow \sim p$ एक सर्व सत्य कथन	
	, ,	(पुनरुक्ति) है ?	3
	(ग)		
		पूर्णांक हलों की संख्या ज्ञात कीजिए, जहाँ	
		$0 < x \le 6, \ 0 < y \le 7, \ 0 < z \le 8.$	3
3.	(क)	गणितीय आगमन् द्वारा दिखाइए कि	
		$(n+1)^2 < 2n^2, \forall \ n \ge 3.$	4
	(ख)	प्रारंभिक प्रतिबंधों $a_0 = 0$, $a_1 = 1$, $a_2 = -1$ वाले	
	•	पुनरावृत्ति सम्बन्ध	
		$a_n - 10 a_{n-1} + 31 a_{n-2} - 30 a_{n-3} = 0, n \ge 3$	
		को हल कीजिए।	4
	(ग)	ऐसी 38 अलग-अलग समय अवधियाँ हैं जिनके दौरान	
		विश्वविद्यालय की कक्षाओं की अनुसूची बनाई जा	
		सकती है। यदि 677 अलग-अलग कक्षाएँ हैं, तब	
		कितने अलग-अलग कमरों की आवश्यकता होगी ?	2
4.	(क)		
		है, तब इसकी क्या प्रायिकता है कि अंकों का गुणनफल	
		28 होगा ?	3
	(ख)	44	
		(ii) Q_3 का चित्र बनाइए ।	
		(iii) क्या Q ₃ ऑयलरी है ? अपने उत्तर की पुष्टि	
		कीजिए ।	
		(iv) क्या Q ₃ हैमिल्टोनियन है ? अपने उत्तर की पुष्टि	
		कीजिए ।	4

(ग) पुनरावृत्ति सम्बन्ध

 $a_n = a_{n-1} + 3(n-1), \ a_0 = 1$ को हल कीजिए | 3

5. (क) निम्नलिखित तर्क की मान्यता की जाँच कीजिए:

5

यदि मैं 96% अंक प्राप्त नहीं करता, तो मुझे छात्रवृत्ति नहीं मिलेगी।

यदि मैं कठोर मेहनत करूँ, तो मेरे 96% अंक आएँगे। मैंने कठोर मेहनत की।

इसीलिए मुझे छात्रवृत्ति मिल गई ।

(ख) निम्नलिखित ग्राफ़ लीजिए:

- (i) क्या G सम्बद्ध है ? यदि नहीं, तो दिखाइए कि G अपने घटकों का असंयुक्त सम्मिलन है ।
- (ii) G में सबसे लम्बे पथ की लम्बाई ज्ञात कीजिए ।
- (iii) G में सबसे लंबा चक्र बताइए I
- (iv) क्या G द्विभाजित है ? पुष्टि कीजिए।

5

6.		जनक फलन विधि का प्रयोग करते हुए रैखिक समीकरण $\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 = \mathbf{n}$, जहाँ $1 \le \mathbf{x}_1 \le 3$, $-1 \le \mathbf{x}_2 \le 1$ और $\mathbf{x}_3 \ge 3$, के पूर्णांक हलों की संख्या ज्ञात कीजिए । दिखाइए कि 10 को अलग-अलग हिस्सों (पूर्णांकों) में विभाजित करने की संख्या 10 को विषम हिस्सों में विभाजित करने की संख्या के बराबर होती है ।	6
7.	(क)	अंग्रेज़ी का शब्द जो बाएँ से दाएँ या दाएँ से बाएँ पढ़े जाने पर समान होता है, वह विलोमपद (palindrome) कहलाता है, उदाहरण के लिए ROTOR एक विलोमपद है । मान लीजिए a_n लंबाई n वाले अंग्रेज़ी शब्दों की संख्या है, जिनका अर्थ हो न हो, लेकिन वे विलोमपद हैं । हम एक ही अक्षर को भी विलोमपद मानते हैं । (i) a_1 और a_2 क्या हैं ? (ii) a_n के लिए पुनरावृत्ति बनाइए । (iii) जाँच कीजिए कि $a_n = \left(\sqrt{26}\right)^n \left\{ \left(\frac{1+\sqrt{26}}{2}\right) + (-1)^n \left(\frac{1-\sqrt{26}}{2}\right) \right\}$	
		पुनरावृत्ति का हल है। (iv) a _n के लिए ऊपर वाले व्यंजक द्वारा a ₃ ज्ञात कीजिए।	5
	(ख)	बहुपद $x^4 + x^2 + x$ को क्रमगुणित बहुपदों $[x]_4$, $[x]_3$ इत्यादि के पदों में व्यक्त कीजिए ।	3

 (η) दिखाइए कि $K_{100,\;101}$ हैमिल्टोनियन नहीं है ।