BIEL-030

DIPLOMA – VIEP – ELECTRONICS AND COMMUNICATION ENGINEERING (DECVI) / ADVANCED LEVEL CERTIFICATE COURSE IN ELECTRONICS AND COMMUNICATION ENGINEERING (ACECVI)

Term-End Examination

00816

June, 2016

BIEL-030 : DIGITAL ELECTRONICS

Time : 2 hours

Maximum Marks: 70

Note: Attempt any five questions. Question no. 1 is compulsory. Use of scientific calculator is allowed.

- 1. Choose the correct answer for the following : $7 \times 2 = 14$
 - (a) Convert the following binary number to decimal:

01011

- (i) **11**
- (ii) 35
- (iii) **15**
- (iv) 10

BIEL-030

P.T.O.

- (b) How many bits are in an ASCII character?
 - (i) 16
 - (ii) 8
 - (iii) **7**
 - (iv) 4
- (c) What is the major advantage of ECL logic?
 - (i) Very high speed
 - (ii) Wide range of operating voltage
 - (iii) Very low cost
 - (iv) Very high power
- (d) How is a J-K flip-flop made to toggle?
 - (i) J = 0, K = 0
 - (ii) J = 1, K = 0
 - (iii) J = 0, K = 1

(iv)
$$J = 1, K = 1$$

- (e) How many inputs are required for a 1-of-16 decoder ?
 - (i) **2**
 - (ii) 4
 - (iii) **8**
 - (iv) 16
- (f) The output of an AND gate with three inputs, A, B and C, is HIGH when
 - (i) A = 1, B = 1, C = 0
 - (ii) A = 0, B = 0, C = 0
 - (iii) A = 1, B = 1, C = 1
 - (iv) A = 1, B = 0, C = 1

BIEL-030

- A binary code that progresses such that (**g**) only one bit changes between two successive codes is
 - Nine's-complement code (i)
 - (ii) 8421 code
 - (iii) Excess-3 code
 - (iv) Gray code

2.	(a)	Design a Binary to Gray code converter.	7
	(b)	Implement EXOR gate using only NAND gates.	4
	(c)	What do you mean by self-complementing code?	3
3.	Witl of T	n the help of a diagram, explain the operation TL NAND gate with totem pole output.	14
4.	Give	en $\gamma(A, B, C, D) = \prod M(0, 1, 3, 5, 6, 7, 10, 14,$	

- 15). Draw the K-map and obtain the simplified expression. Realize the minimum expression using basic gates. 14
- Convert a J-K flip-flop into a D flip-flop and 5. 14 a T flip-flop.

3

BIEL-030

P.T.O.

- Draw the logic diagram of a 3-bit Serial In Serial
 Out (SISO) shift register and explain its working. 14
- 7. Write short notes on any *two* of the following: $2 \times 7 = 14$
 - (a) Realization of NMOS inverter
 - (b) Applications of Multiplexer, Demultiplexer and Flip-flops
 - (c) Ring Counter

BIEL-030