No. of Printed Pages: 3

BICSE-001

B.Tech. – VIEP – COMPUTER SCIENCE AND ENGINEERING (BTCSVI)

Term-End Examination

00346

June, 2016

BICSE-001: EMBEDDED SYSTEM

Tin	ne : 3	hours Maximum Mari	Maximum Marks : 70	
Note: Answer any seven questions. All questions co equal marks.				
1.	(a)	Discuss the operation of interrupt controller in embedded system.	s <i>5</i>	
	(b)	Explain the hardware and software time units. Also compare their performances.	e r 5	
2.	(a)	How does ISA bus architecture differ from PCI bus architecture?	5	
	(b)	Differentiate between micro-processor an micro-controller.	d 5	

3.	(a)	Describe the hard real time and soft real	
		time systems. Give an example of each	
		system. Which one system is harder to	
		design? Justify your answer.	7
	(b)	Enumerate the sequence of events that	
		takes place in interrupt handling.	3
4.	Expl	ain the embedded software development	
	proc	ess.	10
5.	(a)	List the features of P and V semaphores	
		and how these are used as a resource key,	
		as a counting semaphore and as a mutex.	7
	(b)	Why do you need at least one timer device	
		in an embedded system?	3
6.	(a)	Describe the scheduling algorithms of	
		RTOS and explain the concept of Round	
		Robin scheduling.	5
	(b)	Discuss the role of RTOS in interrupt	
		handling and task scheduling.	5
7.	(a)	Explain the data transfer using direct	
		memory access in embedded system.	5
	(b)	Describe the features of USB and CAN	
		buses.	5

8.	(a)	Explain the architecture of a	
		micro-processor.	5
	(b)	Write the steps taken by micro-controller	
•		on activation of interrupt.	5
9.	(a)	Why is shared memory process	
		communication difficult?	5
	(b)	Enumerate the tests needed in Real Time	
		System.	5
10.	Write short notes on the following:		
	(a)	Flash Memory	5
	(b)	Hardware Partitioning	5