No. of Printed Pages: 5

BICE-024

DIPLOMA IN CIVIL ENGINEERING (DCLEVI) / ADVANCED LEVEL CERTIFICATE IN CIVIL ENGINEERING (ACCLEVI)

Term-End Examination

00376

June, 2016

BICE-024 : SOIL MECHANICS AND FOUNDATION ENGINEERING

Time: 2 hours

Maximum Marks: 70

Note: Attempt any five questions. Question no. 1 is compulsory. All questions carry equal marks. Use of scientific calculators is allowed.

- 1. Choose the correct option from the following: $7\times2=14$
 - (a) Water content of soil can
 - (i) never be greater than 100%
 - (ii) take values only from 0% to 100%
 - (iii) be less than 0%
 - (iv) be greater than 100%
 - (b) Valid range for n, the % voids, is
 - (i) 0 < n < 100
 - (ii) $0 \le n \le 100$
 - (iii) n > 0
 - (iv) $n \le 0$

(c)	When t	the	plastic	limit	of a	soil	is greater
	than t	he]	liquid	limit,	then	the	plasticity
	index is reported as						

(I) Heganive	(i)	negative
--------------	-----	----------

- (ii) zero
- (iii) non-plastic (NP)
- (iv) 1

(d) Coarse grained soils are best compacted by a

- (i) drum roller
- (ii) rubber tyred roller
- (iii) sheep's foot roller
- (iv) vibratory roller

(e) If the shearing stress is zero on two planes, then the angle between the two planes is

- (i) 45°
- (ii) 90°
- (iii) 135°
- (iv) 225°

- (f) Terzaghi's bearing capacity factors N_c , N_q and N_γ are functions of
 - (i) cohesion only
 - (ii) angle of internal friction only
 - (iii) both cohesion and angle of internal friction
 - (iv) None of the above
- (g) Which of the following pairs is/are correctly matched?
 - (A) Standard penetration test Relative density
 - (B) Vane shear Cohesion
 - (C) Consolidation test Bearing capacity
 - (i) A, B and C
 - (ii) A alone
 - (iii) A and B
 - (iv) B and C
- 2. (a) Find the relation between e, G, w and S_r for a soil sample. Here, e = Void ratio, G = Specific gravity, w = Water content S_r = Saturation ratio.

(b) Describe the Pycnometer method to determine water content for coarse gained soils with known specific gravity G.

7

7

sample, 6 cm in height and 50 cm² in cross-sectional area, if a quantity of water equal to 430 ml is passed down in 10 minutes, under an effective constant head of 40 cm. On over-drying, the test specimen has a mass of 498 g. Taking the specific gravity of soil solids as 2.65, calculate the seepage velocity of water during the test.

14

4. (a) Discuss the Mohr-Coulomb Failure theory in detail.

7

(b) A cylinder of soil fails under an axial vertical stress of 160 kN/m², when it is laterally unconfined. The failure plane makes an angle of 50° with the horizontal. Calculate the value of cohesion and the angle of internal friction of the soil.

7

5. (a) Explain the Proctor Needle method to determine water content.

7

(b) Write the factors which affect the compacted density of soil.

7

6. (a) Write the assumptions in Terzaghi's analysis for bearing capacity of soil.

5

9

(b) Design a strip footing to carry a load of 750 kN/m at a depth of 1.6 m in a $c - \phi$ soil having a unit weight of 18 kN/m³ and shear strength parameters as c = 20 kN/m³ and $\phi = 25^{\circ}$. Determine the width of footing, using a factor of safety of 3 against shear failure. Use Terzaghi's equations.

For
$$\phi=25^{\circ},~N_{c}=25\cdot 1,~N_{q}=12\cdot 7$$
 and $N_{\gamma}=9\cdot 7.$

- 7. Write short notes on any **four** of the following: $4\times 3\frac{1}{2}=14$
 - (a) Augur Boring
 - (b) Standard Penetration Test
 - (c) Negative Skin Friction
 - (d) Under-Reamed Pile Foundations
 - (e) Spread Footing
 - (f) Disturbed and Undisturbed Samples