No. of Printed Pages: 7

BET-012

DIPLOMA IN CIVIL ENGINEERING (DCLE(G)) / DIPLOMA IN MECHANICAL ENGINEERING (DME) / DCLEVI / DMEVI / DELVI / DECVI / DCSVI / ACCLEVI / ACMEVI / ACELVI / ACECVI / ACCSVI

00858

Term-End Examination

June, 2016

BET-012: PHYSICS

Time: 2 hours

Maximum Marks: 70

Note: Question no. 1 is compulsory. Attempt any four questions from the remaining question no. 2 to 7.

Use of scientific calculator is permitted.

- 1. Choose the correct answer from the given four alternatives. $14 \times 1 = 14$
 - (a) One Poise is equal to
 - (i) 10 Pa.s
 - (ii) 100 Pa.s
 - (iii) 10^{-1} Pa.s
 - (iv) 10^{-2} Pa.s

BET-012

1

P.T.O.

- (b) The surface tension of water at 20°C is about
 - (i) $72.6 \times 10^{-2} \text{ Nm}^{-1}$
 - (ii) $72.6 \times 10^{-3} \text{ Nm}^{-1}$
 - (iii) $72.6 \times 10^{-4} \text{ Nm}^{-1}$
 - (iv) None of these
- (c) The fluid pressure at a point within the fluid is given by
 - (i) $P = \rho/gh$
 - (ii) $P = g/\rho h$
 - (iii) $P = \rho gh$
 - (iv) $P = \rho^2 gh$
- (d) For an ideal gas $C_p C_v$ is equal to
 - (i) Zero
 - (ii) R
 - (iii) 2R
 - (iv) 3R
- (e) For monoatomic ideal gas the molar heat capacity at constant volume is
 - (i) **R**
 - (ii) $\frac{3}{2}$ R
 - (iii) $\frac{5}{2}$ R
 - (iv) 2R

- (f) According to Stefan-Boltzmann law, the heat energy radiated per second per unit area of a black body is proportional to
 - (i) T^{-4}
 - (ii) T^{-2}
 - (iii) T
 - (iv) **T**⁴
- (g) The value of Stefan-Boltzmann constant is about
 - (i) $5.6 \times 10^{-6} \text{ W/m}^2 \text{K}^4$
 - (ii) $5.6 \times 10^{-7} \text{ W/m}^2 \text{K}^4$
 - (iii) $5.6 \times 10^{-8} \text{ W/m}^2 \text{K}^4$
 - (iv) None of these
- (h) The temperature at which the numerical values of Celsius and Fahrenheit scales are same is
 - (i) 0 deg.
 - (ii) -32 deg.
 - (iii) 40 deg.
 - (iv) 40 deg.

- (i) The magnetic susceptibility of diamagnetic material is
 - (i) zero
 - (ii) small positive value
 - (iii) large positive value
 - (iv) small negative value
- (j) An electron is moving along the direction of magnetic field B with velocity v. The force on this electron is
 - (i) qvB
 - (ii) -qvB
 - (iii) zero
 - (iv) infinite
- (k) The correct expression of Lorentz force is
 - (i) $\overrightarrow{F} = \overrightarrow{qE} + \overrightarrow{qV} \times \overrightarrow{B}$
 - (ii) $\overrightarrow{F} = \overrightarrow{qE} + \overrightarrow{qB} \times \overrightarrow{V}$
 - (iii) $\overrightarrow{F} = \overrightarrow{qE}$
 - (iv) None of these
- (l) The speed of sound in air is approximately
 - (i) 300 m/s
 - (ii) 330 m/s
 - (iii) 350 m/s
 - (iv) 500 m/s

(m)	The phenomenon of mirage can be explained on the basis of	
	(ii)	refraction
		(iii)

- (iv) total internal reflection
- (n) For ohmic conductors, the plot between the current and voltage is a
 - (i) parabola
 - (ii) straight line
 - (iii) hyperbola
 - (iv) None of these
- 2. (a) What is Hooke's law? Explain the stress-strain curve for a metallic wire.
 - (b) State and explain Ohm's law.
 - (c) Define stress and strain.

6+4+4

- 3. (a) What are the different modes of heat transfer? Explain them by giving examples.
 - (b) Find the expression of root mean square speed of ideal gas molecules.
 - (c) Discuss the factors affecting the speed of sound in a gaseous medium 6+4+4

- 4. (a) Derive the expression of mirror formula $\frac{1}{f} = \frac{1}{h} + \frac{1}{v}$
 - (b) Explain the phenomenon of mirage in detail. 10+4
- 5. (a) Show that for parallel combination of resistances R_1 and R_2 , the equivalent resistance R is given by $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$.
 - (b) Calculate the resistivity of a material of a wire 2 m long, 0.2 mm in diameter and having a resistance of 4 ohms.
 - (c) What is drift velocity? Find the expression for drift velocity of electrons. 6+4+4
- 6. (a) Find the expression of magnetic field at a distance 'r' from a long current carrying wire.
 - (b) What are the different types of magnetic materials? Discuss them in detail. Give the examples of each type of materials.
 - (c) Briefly discuss the working of cyclotron. 6+4+4

- 7. Write short notes on any **four** of the following: $4\times 3\frac{1}{2}=14$
 - (a) Archimedes principle
 - (b) Reynolds number
 - (c) Avogadro's law
 - (d) Total internal reflection
 - (e) Wheatstone bridge
 - (f) Potentiometer