No. or ted Pages : 3

BAR-044

BACHELOR OF ARCHITECTURE (B.Arch.)

Term-End Examination

June, 2016

BAR-044 : THEORY OF STRUCTURES – V

Time : 3 hours

Maximum Marks : 70

- Note: Answer any four questions. All questions carry equal marks. Use of calculator and IS : 456 code is allowed.
- Design a cantilever beam of span 3.5 m and of uniform width 300 mm. The beam carries UDL of 30 kN/m including its self weight. Adopt Fe 415 grade of steel and M-20 grade of concrete. Assume width of support as 300 mm. 17¹/₋
- Design a shear reinforcement for an RCC beam of effective span 6 m. The beam carries UDL of 25 kN/m as Imposed load. Effective depth of the beam is 550 mm and width is 300 mm and is reinforced with 4 bars of 25 mm Å. Adopt M-20 grade of concrete and Fe 415 grade of steel. 17⁻¹/₋

BAR-044

1

- 3. Design a two way RC slab for an office floor of effective size $3.5 \text{ m} \times 4.5 \text{ m}$, simply supported on all its four edges with corners free to lift. Live load on the slab is 5 kN/m^2 . Use M-20 grade of concrete and Fe 415 grade of steel. $17\frac{1}{2}$
- 4. A column of unsupported length 3.0 m has a cross-section of 450×600 mm. The column is subjected to factored axial load of 4000 kN and both ends are effectively held in position and restrained against rotation. Use Fe 415 grade of steel and M-40 grade of concrete. $17\frac{1}{2}$
- 5. An RC column 450 mm \times 600 mm has to transmit a factored load of 2600 kN to the footing. Design the footing, if safe bearing capacity of the soil is 250 kN/m². Adopt M-25 grade of concrete and Fe 415 grade of steel. 17^{-1}
- 6. Calculate the moment of resistance of doubly RC beam with following details :

Effective depth = 550 mm, width = 300 mm, top cover = 20 mm, top reinforcement = 2 bars of 16 mm ϕ , Bottom reinforcement = 3 bars of 20 mm ϕ , Grade of concrete = M-20 and Grade of steel = Fe 415. Assume, f_{sc} the compressive stress in steel = 0.7 f_v. $17\frac{1}{2}$

BAR-044

2

- 7. Answer the following :
 - (a) Why does the code impose maximum and minimum limits with regards to spacing and percentage area of flexural reinforcement?
 - (b) What is the necessity of Earthquake Resistant Structures ?
 - (c) Discuss the need of doubly reinforced beams. $5\frac{1}{2}$

BAR-044

500

6