No. of Printed Pages: 4

BME-035

B.Tech. MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING)

Term-End Examination

DeedD

June, 2016

BME-035 : INDUSTRIAL ENGINEERING AND OPERATIONS RESEARCH

Time : 3 hours

Maximum Marks: 70

Note: Attempt four questions from Section A and three questions from Section B. All questions carry equal marks. Assume any missing data suitably.

SECTION A

Answer any **four** of the following :

- 1. Explain the productivity of labour, material, machine and land. Also mention the benefits of higher productivity.
- **2.** Explain with examples the difference between : 2×5
 - (a) Operation process chart and Flow process chart
 - (b) Flow diagram and String diagram

BME-035

10

3. Explain with the help of ergonomic concepts, how can motion economy be ensured in designing a workplace layout.

10

- 4. A company is planning to introduce an incentive pay scheme in its manufacturing plant. In developing standards for one operation, time study analysts observed a worker for 30 minutes. During that period he produced 42 units. The analyst rated the worker as 130. The base wage rate of the worker is ₹ 50 per hour. The firm has established 15% as fatigue factor.
 - (a) What is the standard time for the task?
 - (b) If the worker produced 500 units during an eight-hour day, what wage would the worker have earned?
- 5. Discuss the industrial design factors affecting product design. 10
- 6. Write short notes on any *two* of the following: $2 \times 5 = 10$
 - (a) Standardisation
 - (b) Performance Rating Methods
 - (c) Relationship (Rel) Chart

BME-035

2

SECTION B

Answer any three of the following :

- 7. Illustrate graphically each of the following conditions in case of LPP :
 - (a) Unbound solution
 - (b) Infeasible solution
 - (c) Multiple optimal solution
 - (d) Unique optimal solution
- 8. A company is spending ₹ 1,000 on transportation of its units from three plants to four distribution centres. The supply and demand of units, with unit cost of transportation are given as follows :

		D ₁	D ₂	D ₃	D ₄	Availability
Plant	P ₁	19	30	50	12	7
	P_2	70	30	40	60	10
	P ₃	40	10	60	20	18
Requirements		5	8	7	15	

Distribution Centre

What can be the maximum saving by optimal scheduling?

BME-035

P.T.O.

10

10

3

- 9. A bank has one drive-in counter. It is estimated that cars arrive according to Poisson distribution at the rate of 2 every 5 minutes and that there is enough space to accommodate a line of 10 cars. Other arriving cars can wait outside this space, if necessary. It takes 1.5 minutes on an average to serve a customer, but the service time actually varies according to an exponential distribution. You are required to find
 - (a) the probability of time, the facility remains idle,
 - (b) the expected number of customers waiting but currently not being served at a particular point of time, and
 - (c) the expected time a customer spends in the system. 3+4+3
- 10. Explain the following terms in relation to Game theory: 10
 - (a) Two-person zero-sum game
 - (b) Pure strategy
 - (c) Mixed strategy
 - (d) Principle of dominance
- 11. Write short notes on any *two* of the following decision criteria : 2×5
 - (a) Maximax (Optimism) Criterion
 - (b) Minimax Regret Criterion
 - (c) Hurwicz Criterion

BME-035