No. of Printed Pages: 3

BIEE-022

B.Tech. - VIEP - ELECTRICAL ENGINEERING (BTELVI)

00016

Term-End Examination June, 2016

BIEE-022: POWER SYSTEMS

Time: 3 hours

Maximum Marks: 70

Note: Attempt any five questions. All questions carry equal marks. Use of scientific calculator is allowed. Missing data, if any, may be suitably assumed.

- 1. (a) Explain the per unit system of analyzing power system problems. How does it reduce the efforts of power system engineers?
 - (b) A single-phase two-winding transformer is rated 20 kVA, 480/120 volts, 60 Hz. The leakage impedance of the equivalent transformer referred to the 120 volts winding. denoted winding is 2. $Z_{eq_2} = \sqrt{0.0525}$ 78.13 Ω . Using transformer ratings base values. as determine the per-unit leakage impedance referred to winding 2 and referred to winding 1.

7

7

2.	(a)	What are short circuit studies? Explain in detail.	7
	(b)	Deduce and draw the sequence network for a line-line to ground fault at the terminals of an unloaded generator.	7
3.	(a)	Explain the flow chart of Gauss-Seidel method used for load flow study in power system.	10
	(b)	Discuss the purpose of load flow studies of a power system.	4
4.	(a)	Explain Equal Area criterion for transient stability during a three-phase fault.	7
	(b)	Why is steady state stability limit higher than transient stability limit? Explain the various techniques for improving transient stability.	7
5.	(a)	Deduce the general expression for reflection and refraction of travelling wave.	7
	(b)	Determine the reflection and refraction for short circuit transmission line. Why is the grid sub-station usually connected to the overhead line through short length of cable?	7

- 6. (a) Derive an expression for Swing Equation for an alternator with negligible damping connected to an infinite bus-bar.
- 7
- (b) Discuss about the current limiting reactors.

 Write where are they used with their suitable application.

7

- 7. Write short notes on any **two** of the following: $2\times7=14$
 - (a) Role of computer method in power systems
 - (b) Newton-Raphson method for load flow analysis
 - (c) Velocity of propagation