No. of Printed Pages: 3

BIEL-010

B.Tech. – VIEP – ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination

00896

June, 2016

BIEL-010 : DIGITAL SIGNAL PROCESSING

Time : 3 hours

Maximum Marks: 70

2

- Note: Attempt any seven questions. All questions carry equal marks. Use of scientific calculator is permitted. Missing data may be suitably assumed.
- 1. (a) Compute the N-point DFT of each of the following sequences :

(i)	$\mathbf{x}_1(\mathbf{n}) = \delta(\mathbf{n} \cdot \mathbf{n})$	$-n_0$) where $0 \le n_0 < N$	2
-----	--	--------------------------------	---

- (ii) $x_2(n) = \alpha^n \quad 0 \le n < N$
- (b) Prove that linear convolution is obtained using circular convolution property of DFT. 6
- Explain in brief, the method to reduce complexity in computation of FFT. Give practical consideration in reducing (a) memory size for storage of coefficients, and (b) computation time. 10
 BIEL-010 1 P.T.O.

3. (a) Determine IDFT of the sequence

 $X(k) = \{2, 1 + j, 0, 1 - j\}.$

A 4-point DFT of sampled data sequence (b) $\{2, 0, 0, 1\}$ is $\{3, 2 + j, 1, 2 - j\}$. Verifv

(i)
$$X(7) = X(3)$$

(ii)
$$X(12) = X(0)$$

- If $x(n) = cos\left(\frac{\pi n}{4}\right)$, $0 \le n \le 7$, obtain X(k) using 4. Decimation-in-frequency FFT algorithm. 10
- 5. Determine the total number of twiddle factors required to compute N-point DFT using Radix-2 Decimation-in-time FFT algorithm and compare it with that of direct computation of N-point DFT.
- 6. The transfer function of an analog filter is $H(s) = \frac{3}{(s+2)(s+3)}$ with $T_s = 0.1$ sec. Design the digital filter IIR using BLT (Bilinear Transformation Method). 10
- 7. Find the order and cut-off frequency of a digital Butterworth filter with the following specification :

 $0.89 \leq |\mathbf{H}(\mathbf{e}^{\mathbf{j}\omega})| \leq 1.$ $0 \le \omega \le 0.4\pi$

 $|\mathbf{H}(\mathbf{e}^{\mathbf{j}\omega})| \le 0.18, \quad 0.6\pi \le \omega \le \pi$

Use impulse invariance method. Draw its poles also.

BIEL-010

10

10

5

5

8. Design a digital FIR filter with

$$H_{f}(e^{j\omega}) = \begin{cases} 1 & 2 \le \omega \le \pi \\ 0, & \text{otherwise} \end{cases}$$

Use Hamming window with N = 7. Also draw the frequency response.

- 9. Compare the frequency domain characteristics of difference window functions used in design of FIR filters.
 10
- 10. Write short notes on any *two* of the following : $2 \times 5 = 10$
 - (a) Overlap-Save Method
 - (b) Lattice and Parallel Realization for Discrete Time Systems
 - (c) Goertzel Algorithm

BIEL-010

1,000

10