No. of Printed Pages: 4

ET-532(A)

B.Tech. Civil (Water Resources Engineering)

Term-End Examination

NN 748

June. 2016

ET-532(A): HYDROLOGY

Time: 3 hours

Maximum Marks · 70

Note: Answer any five questions. All questions carry equal marks. Give neat and labelled sketches. Assume any missing data suitably.

Explain the term hydrologic cycle with a 1. (a) suitable sketch and describe various processes responsible for it. Draw a block diagram representing the complete hydrologic system.

(b) Describe the Thiessen polygon and Isohyetal methods for estimating the average depth of precipitation over a catchment.

7

7

2. (a) Explain the process of evaporation and evapotranspiration. What are the factors affecting these processes? How will you estimate evaporation loss from a lake?

7

(b) Explain different indices for estimating excess rainfall.

7

3. (a) State the relationship between rainfall and run-off. Discuss the factors that affect the run-off. How will you calculate the storm run-off, snow-melt and seasonal run-off? Explain in brief.

7

(b) What is the main difficulty in using the slope-area method of discharge measurement? In a rectangular channel, 15 m wide, depth of flow is 3.5 m and area of cross-section is 52.5 m² at one section and 3.1 m and 51.0 m² respectively at the other section 250 m apart. The drop in the water surface elevation was found to be 0.11 m. If Manning's coefficient is 0.015, estimate the discharge through the channel.

7

4. (a) Define Unit Hydrograph and describe its basic theory. How can you show that the unit hydrograph represents a deterministic model of a watershed?

7

- (b) What is the probability that a 5-year flood will
 - (i) occur four times in a 10-year period?
 - (ii) not occur at all in a 10-year period?

7

5.	(a)	What are the basic assumptions made in	
		the frequency analysis? Explain the	
		characteristics of the data required for such	
		type of analysis.	7
	(b)	While designing any hydraulic structure,	
		(i) what is the need of risk analysis?	
		(ii) what should be the return period?	7
6.	(a)	List and discuss various techniques available to route the flood waves through	
		open channels and reservoirs.	7
	(b)	In an area of 100 hectare, it is observed that water table drops by 5 m. Taking the porosity of the aquifer as 0.3, and the specific retention as 0.1, find the specific yield and change in storage in	
		hectare-metres.	7
7.	(a)	State the design requirements of an engineering hydraulic structure for flood mitigation.	7
	(1.)		•
	(b)	• • • • • • • • • • • • • • • • • • •	
		forecasting and methods of hydrologic	
		analysis. Outline the procedure to forecast	7
		floods.	1

3

ET-532(A)

P.T.O.

8. Write short notes on any four of the following:

$$4 \times 3 \frac{1}{2} = 14$$

- (a) Drought Indices
- (b) Low Flow Analysis
- (c) Ground Water Deficit
- (d) Acidity
- (e) Infiltration Curve