No. of Printed Pages: 3

ET-201(A)

B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering) / B.Tech. (Aerospace Engineering)

Term-End Examination

June, 2016

ET-201(A) : MECHANICS OF FLUIDS

Time : 3 hours

Maximum Marks: 70

Note: Attempt any seven questions. Assume any missing data. Use of non-programmable calculator is permitted.

- 1. (a) Define the following :
 - (i) Density
 - (ii) Water Hammer
 - (iii) Kinematic Viscosity
 - (iv) Surface Tension
 - (v) Cavitation
 - (b) What is fluid static ? Explain the working of a manometer with a suitable diagram.
- (a) A cube of side 'a' and relative density 's' floats in water. Determine the condition for its stability against angular tilt.

ET-201(A)

1

P.T.O.

5

5

5

- (b) Explain the following :
 - (i) Steady and Unsteady flow
 - (ii) Velocity potential and Stream function
- 3. What do you understand by continuity equation ? Derive the continuity equation for steady and compressible fluid flow.
- 4. (a) What is dimensional homogeneity ? Explain the significance of the π -theorem.
 - (b) Derive the Euler's equation for incompressible fluid flow.
- 5. (a) Explain the application of momentum equations with case of force exerted on a pipe-bend.
 - (b) A jet travelling 450 km/hr through still air,
 γ = 10 N/m³, discharges 1000 m³/s through its two propellers of 2.25 m diameter each. Determine (i) the theoretical efficiency, and (ii) the thrust.
- 6. (a) Define the following :
 - (i) Suppressed notch
 - (ii) Contracted weirs
 - (b) Derive the equation of rate of flow for a triangular notch.

2

ET-201(A)

5

5

5

L

5 5

5

- 7. Derive the Navier-Stokes equation of motion.
- 8. (a) What are eddy viscosity and mixing length concepts ?
 - (b) Explain the development of boundary layer concept over flat plate with a suitable diagram. Also derive the relation for momentum thickness.
- **9.** Define the following :
 - (a) Boundary layer
 - (b) Boundary layer thickness
 - (c) Viscous layer
 - (d) Laminar sub-layer
 - (e) Drag
 - (f) Momentum thickness
 - (g) Drag coefficient
 - (h) Velocity distribution
 - (i) Reynolds number
 - (j) Rough and smooth boundary
- 10. (a) An aeroplane weighing 22000 Newtons has a wing area of 22 m² and a span of 10 m. What is the lift coefficient, if it travels at a speed of 300 km/hr in the horizontal direction ? Also calculate the theoretical value of circulation and angle of attack.
 - (b) What is magnus effect ? Also define the shape of airfoil.

ET-201(A)

1,500

5

5

5

5

10×1=10

3