No. of Printed Pages: 8

ET-105(B)

B.Tech. Civil (Construction Management)/ B.Tech. Civil (Water Resources Engineering)

Term-End Examination

June, 2016

00880

ET-105(B) : CHEMISTRY

Time : 3 hours

Maximum Marks: 70

- Note: Question no. 1 is compulsory. Attempt any five questions from the remaining. Use of calculator is permitted.
- 1. Write the correct choice for the following :
 - (a) A hybrid orbital is obtained by taking a linear combination of atomic orbitals of an atom. What is the hybridization of C_2H_2 and BF_3 ?
 - (i) sp^3, sp^3
 - (ii) sp^2 , sp
 - (iii) sp, sp^3
 - (iv) sp^3 , sp^3d
 - (b) The fact that urea or boric acid are solids at room temperature is attributed to the formation of
 - (i) Covalent bonding
 - (ii) Ionic bonding
 - (iii) H-bonding
 - (iv) Co-ordinate bonding

ET-105(B)

P.T.O.

2

(c) Which of the following are extensive properties?

2

l

 $\mathbf{2}$

 $\mathbf{2}$

- (i) Viscosity, Weight
- (ii) Weight, Mass
- (iii) Temperature, Surface tension
- (iv) Specific gravity, Refractive index
- (d) The first order rate constant for the decomposition of N_2O_5 is $6\cdot 2 \times 10^{-4} \text{ s}^{-1}$. What is the half-life for this decomposition? 2
 - (i) $1062.8 \,\mathrm{s}$
 - (ii) $1117.7 \,\mathrm{s}$
 - (iii) 1000.5 s
 - (iv) $1120.7 \,\mathrm{s}$
- (e) There are several reactions in which an intermediate product is generated that catalyzes the reaction. Such products are called
 - (i) Acid/Base catalysts
 - (ii) Biological catalysts
 - (iii) Autocatalysts
 - (iv) None of the above
- (f) Consider the system consisting of the three solids Fe_3O_4 , FeO and Fe_2O_3 . How many components are there ?
 - (i) Bivariant
 - (ii) Trivariant
 - (iii) Univariant
 - (iv) Invariant

ET-105(B)

(**g**)

Contact process for the manufacture of H_2SO_4 is an exothermic reaction and proceeds with a decrease in volume. Hence the formation of SO_3 is favoured by

 $2SO_2 + O_2 \rightleftharpoons 2SO_3, \Delta H = -22.1 \text{ kcal}$

- (i) Low temperature, High pressure
- (ii) High temperature, High pressure
- (iii) High temperature, Low pressure
- (iv) Low temperature, Low pressure
- (h) In order to protect steel structures from corrosion, which of the following will be useful?
 - (i) Ni, Na, Pb
 - (ii) Zn, Mg, Al

(iii) Na, Pb, Cd

(iv) Ni, Pb, Cd

- (i) Sodium hydroxide flakes or pellets should not be exposed to air as they are deliquescent and absorb
 - (i) O₂
 - (ii) N_2
 - (iii) SO₂
 - $(iv) CO_2$
- (j) In zeolite method, Na⁺ ions in the pores of the zeolite can be exchanged by
 - (i) Al^{3+}
 - (ii) OH⁻
 - (iii) Ca^{2+}
 - (iv) H⁺

ET-105(B)

3

P.T.O.

2

2

- 2. (a) Write the balanced equation for the following reactions :
 - (i) Al₂O₃ dissolved in a basic solution (NaOH).

3

Ì

2

3

- (ii) Addition of NH₄Cl to the solution from(i) produces a white precipitate.
- (iii) Thermal decomposition of the precipitate from (ii) restores Al_2O_3 .
- (b) Through Zirconium and Hafnium occur in group-4 (IV B) group, they belong to the fifth and the sixth periods respectively. Explain why their size is almost identical instead of Hf (Z = 72) being larger than Zr (Z = 40).
- (c) Predict the geometry of complexes formed by transition metal ions, using the following hybrid orbitals:
 - (i) sp^3
 - (ii) d^2sp^3
 - (iii) dsp^2
- (d) Write the name of the following complexes : 2
 - (i) $[Cr(NH_3)_3(NO_2)_3]$
 - (ii) $[Cr(H_2O)_4Cl_2]Cl$

ET-105(B)

3. (a) Give reasons for the following :

	(i) Instead of electrolysing water, an aqueous solution of an alkali is electrolysed to manufacture hydrogen.	2
	(ii) In steam-hydrocarbon reforming process for hydrogen, excess of steam is used.	2
(b)	Describe the contact process with a flow chart for the manufacture of sulphuric acid.	6
4. (a)	How would you prepare aspirin from ortho-hydroxybenzoic acid (salicylic acid)?	3
(b)	How would you convert 2-propanol to propene, propyne into 2-butene and 2-butene into butane ?	3
(c)	Explain how methane is used in the synthesis of ammonia and methanol.	4
5. (a)	Write a short note on thermosetting plastics.	5
(b)	What do you understand by Genetic Engineering?	5
6. (a)	Draw and explain the phase diagram of one component system.	4
(b)	Benzene boils at 80°C and the entropy of vaporisation is 88 JK^{-1} mol ⁻¹ . What is the vapour pressure of benzene at 27°C?	2
ET-105(B) 5 P.T	. O .

(c) Write the Mass law expression for the equilibrium constant for the following reactions:

(i)
$$\operatorname{CH}_4(\mathbf{g}) + 2\operatorname{H}_2S(\mathbf{g}) \rightleftharpoons \operatorname{CS}_2(\mathbf{g}) + 4\operatorname{H}_2(\mathbf{g})$$

(ii)
$$\operatorname{HgO}(s) \rightleftharpoons \operatorname{Hg}(g) + \frac{1}{2}O_2(g)$$

(iii)
$$2\text{FeSO}_4(s) \rightleftharpoons \text{Fe}_2\text{O}_3(s) + \text{SO}_2(g) + \text{SO}_3(g)$$

(iv)
$$H_2(g) + \frac{1}{2}O_2(g) \rightleftharpoons H_2O(l)$$

7. (a) Atomic Al (atomic weight - 26.98 g/mol) crystallizes into an FCC structure with a density of 2698 kg/m³. X-rays of wavelength 0.1537 nm, when diffracted from (III) planes of this lattice, gave a maximum intensity at an angle of 19.2°. Calculate the Avogadro number, using the above information.

(b) Draw the energy level diagram of XeF_2 .

(c) The geometry of $HgCl_2$ is

$$\frac{2 \cdot 3 \overset{\text{A}}{=}}{\text{Cl} - \text{Hg} \overset{\text{L}}{=} \text{Cl}}$$

What is the electronic configuration of Hg? Which orbitals contribute to bonding in HgCl₂?

8. (a) Explain Heisenberg's uncertainty principle with relationship between energy and momentum.

ET-105(B)

5

4

3

2

- (b) What is the probability of finding a particle in a 1-dimensional box in the state n = 1 in a small distance of 0.1 Å at the centre of the box of length 10 Å?
- **9.** (a) Given the following data for reactions under the standard conditions, calculate the heat of formation of methane :

(i)
$$H_2(g) + \frac{1}{2}O_2(g) \rightleftharpoons H_2O(l) + 286 \text{ kJ}$$

(ii)
$$C(s) + O_2(g) \rightleftharpoons CO_2(g) + 394 \text{ kJ}$$

(iii) $CH_4(g) + 2O_2(g) \rightleftharpoons$ $CO_2(g) + 2H_2O(l) + 890 \text{ kJ}$

What is ΔH for the reaction

$$C(s) + 2H_2(g) \rightleftharpoons CH_4(g)$$
?

(b) The half-life for a reaction between A and B varied with initial pressure as shown in the table below :

Assume $A + B \longrightarrow$ Products

P _A mm	500	125	250	250
P _B mm	10	15	10	20
$t_{1/2}$ min	80	213	160	80

What is k for the reaction ?

(c) Write a short note on Acid/Base catalysis. 3
ET-105(B) 7 P.T.O.

5

3

10. (a) Complete the reaction sequence.

$$CH_{3}CH_{2}Br \xrightarrow{Mg} X \xrightarrow{(i) CH_{3}CHO} Y$$

$$\xrightarrow{(i) H_{2}O} Y$$

(b) Draw the Newman projection of butane using the C-2 to C-3 bond as reference in the eclipsed form.

(c) Complete the reaction sequence.

$$\begin{array}{c}
H_{3}C \\
H_{3}C \\
H_{3}C
\end{array} > C = O + NH_{2}NH_{2} \longrightarrow X \xrightarrow{H_{2}O} Y$$

(d) Complete the sequence.

$$\begin{array}{ccc} H & H \\ | & | \\ CH_3 - C - C - H \\ | & | \\ Br & Br \end{array} \xrightarrow{KOH/} X \xrightarrow{NaNH_2} Y$$

(e) Write the IUPAC name of O

$$\mathbf{H}_{3}\mathbf{C} - \mathbf{C} - \mathbf{N} \underbrace{\begin{array}{c} \mathbf{C}\mathbf{H}_{3} \\ \mathbf{C}\mathbf{H}_{3} \end{array}}_{\mathbf{C}\mathbf{H}_{3}}.$$

2

ET-105(B)

8

1,500

2

2