No. of Printed Pages: 5

BCS-012

BACHELOR OF COMPUTER APPLICATIONS (BCA) (Revised)

Term-End Examination June, 2016

04336

BCS-012: BASIC MATHEMATICS

Time: 3 hours

Maximum Marks: 100

Note: Question number 1 is compulsory. Attempt any three questions from the remaining questions.

1. Attempt all parts:

(a) Show that

$$\begin{vmatrix} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{vmatrix} = (a - b)(b - c)(c - a).$$
 5

(b) If
$$A = \begin{pmatrix} 1 & -2 \\ & & \\ 2 & -1 \end{pmatrix}$$
, $B = \begin{pmatrix} a & 1 \\ & & \\ b & -1 \end{pmatrix}$ and

$$(A + B)^2 = A^2 + B^2$$
, find a and b.

5

- (c) Use the principle of mathematical induction to show that $2 + 2^2 + ... + 2^n = 2^{n+1} 2$ for each natural number n.
- (d) Find the 10^{th} term of the harmonic progression $\frac{1}{7}$, $\frac{1}{15}$, $\frac{1}{23}$, $\frac{1}{31}$, ...

5

- (e) If Z is a complex number such that $|Z-2i| = |Z+2i|, \text{ show that } Im(Z) = 0. \qquad 5$
- (f) Find the quadratic equation whose roots are $2 \sqrt{3}$, $2 + \sqrt{3}$.
- (g) If $y = ln \left[e^{x} \left(\frac{x-2}{x+2} \right)^{3/4} \right]$, find $\frac{dy}{dx}$.
- (h) Evaluate: 5

$$\int \frac{\mathrm{dx}}{\sqrt{x} + x}$$

- 2. (a) If $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$, show that
 - $A^2 4A 5I_3 = 0$. Hence obtain A^{-1} and A^3 . 10

(b) If
$$A = \begin{bmatrix} 3 & 4 & -5 \\ 1 & 1 & 0 \\ 1 & 1 & 5 \end{bmatrix}$$
, show that A is

row equivalent to I_3 .

5 .

5

5

5

(c) Use Cramer's rule to solve the following system of equations:

x + 2y + 2z = 3

3x - 2y + z = 4

x + y + z = 2

3. (a) Find the sum of an infinite G.P. whose first term is 28 and fourth term is $\frac{4}{49}$.

(b) If x = a + b, $y = a\omega + b\omega^2$, $z = a\omega^2 + b\omega$ (where ω is a cube root of unity and $\omega \neq 1$), show that $xyz = a^3 + b^3$.

(c) If the roots of $ax^3 + bx^2 + cx + d = 0$ are in A.P., show that

 $2b^3 - 9abc + 27a^2d = 0.$ 5

(d) Solve the inequality

BCS-012

 $\frac{5}{|\mathbf{x}-3|} < 7.$

- 4. (a) Determine the values of x for which $f(x) = 5x^{3/2} 3x^{5/2}, x > 0 \text{ is}$
 - (i) increasing
 - (ii) decreasing. 5
 - (b) Find the points of local extrema of

$$f(x) = \frac{3}{4}x^4 - 8x^3 + \frac{45}{2}x^2 + 2015.$$

(c) Evaluate: 5

$$\int \frac{x^2}{(x+2)^3} \, \mathrm{d}x$$

- (d) Find the area bounded by the curves $y = x^2$ and $y^2 = x$.
- 5. (a) For any vectors show that

$$|\overrightarrow{a} + \overrightarrow{b}| \le |\overrightarrow{a}| + |\overrightarrow{b}|.$$
 5

(b) Find the shortest distance between $\overrightarrow{r} = (1+\lambda) \stackrel{\wedge}{i} + (2-\lambda) \stackrel{\wedge}{j} + (1+\lambda) \stackrel{\wedge}{k} \text{ and}$ $\overrightarrow{r} = 2 (1+\mu) \stackrel{\wedge}{i} + (1-\mu) \stackrel{\wedge}{j} + (-1+2\mu) \stackrel{\wedge}{k}. \qquad 5$

(c) A man wishes to invest at most ₹ 12,000 in Bond A and Bond B. He must invest at least ₹ 2,000 in Bond A and at least ₹ 4,000 in Bond B. If Bond A gives return of 8% and Bond B that of 10%, find how much money be invested in the two bonds to maximize the return.

10