No. of Printed Pages: 12

MECE-001

MASTER OF ARTS (ECONOMICS)

Term-End Examination June, 2014

02352

MECE-001: ECONOMETRIC METHODS

Time: 3 hours Maximum Marks: 100

Note: Answer any **two** questions from Section A and any **five** questions from Section B.

SECTION A

- 1. The relationship between variables Y and X is linear i.e. $Y = \alpha + \beta X + \epsilon$. Assume, however, that the classical homoscedasticity assumption is violated. Specifically, for the first n_1 observations, the variance of the error term ϵ is 1, whereas for the remaining n_2 observations, the variance of the error term ϵ is 4.
 - (a) What problems arise if you estimate α and β by OLS?
 - (b) How would you estimate α and β by generalized least squares? 20

2. The relationship between 2 variables, Y and X, is as follows:

Y = α + βX + ε. Your data set consists of 6 observations and is as follows:

Y	4	2	0	3	2	1
X	1	1	1	2	2	2

- (a) Using OLS regression, obtain estimates of α and β .
- (b) What is the coefficient of determination (i.e. \mathbb{R}^2) of your regression?

20

- 3. Assume that the true model in deviation form is $y_i = \beta x_i + \epsilon_i$ and let the variance of ϵ_i be σ^2 . Assume that the variable y^* , instead of y, is obtained in the measurement process, where $y_i^* = y_i + v_i$. Assume that the variance of v_i is σ_v^2 and $Cov(v_i, x_i) = 0$. You run a regression with y^* as the dependent variable and x as the independent variable. Let $\hat{\beta}$ be the OLS estimator of β .
 - (a) Is $\hat{\beta}$ an unbiased estimator of β ? Provide a proof for your answer.
 - (b) Show that the variance of $\hat{\beta}$ is increasing in σ_v^2 , the variance of the measurement error.

- 4. Let the dependent variable Y_i assume two values : 0 and 1. Let x_i denote the set of independent variables, some of which may be continuous. Assume that you build a linear probability model to study the impact of x_i on $Y_i i.e.$, $Y_i = x_i\beta + \epsilon_i$, where ϵ_i is normalized to have zero mean.
 - (a) Show that for each x_i , the error term ε_i can take just two values.
 - (b) Show that Var $(\epsilon_i \mid x_i)$, the variance of ϵ_i given x_i , is equal to $x_i\beta$ $(1-x_i\beta)$.
 - (c) In the model, why is the probability that $Y_i = 1$ given x_i not constrained to lie in the interval [0, 1]?

SECTION B

- 5. On the basis of n observations, let the statistic $\hat{\theta}$ be as follows: $\hat{\theta} = \theta$ with probability $1 1/n^2$ and $\hat{\theta} = 2$ with probability $1/n^2$.
 - (a) Is the statistic consistent?
 - (b) Is the statistic unbiased?
 - (c) Is the statistic asymptotically unbiased?

6. The relationship between variables Y and X is linear – i.e. $Y = \alpha + \beta X + \epsilon$.

- (a) State all the classical assumptions for ordinary least squares (OLS).
- (b) Let $\hat{\beta}$ denote the OLS estimator of β . Show that all the classical assumptions are **not** required to demonstrate that $\hat{\beta}$ is an unbiased estimator (i.e. $E(\hat{\beta}) = \beta$).

7. The relationship between variables Y, X_1 and X_2 is linear – i.e. $Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \epsilon$.

- (a) Let $\hat{\beta}_1$ be the OLS estimator of β_1 . If the correlation coefficient between X_1 and X_2 is increased (holding fixed the variances of X_1 , X_2 and ϵ), does the variance of β_1 increase or decrease? Discuss.
- (b) In the context of this question, outline how you would use Klien's method to determine whether multicollinearity is a problem.

12

12

- 8. Suppose that you have time series data for two variables, X and Y. Your model is as follows: $Y_t = \beta_1 + \beta_2 X_t + u_t$, t = 1, 2, ..., T; $u_t = \rho u_{t-1} + \epsilon_t$, where ϵ_t is i.i.d. normal with mean 0 and variance σ^2 .
 - (a) Show how you will use the Breusch-Godfrey test to detect autocorrelation in the error term, u_t. Remember to specify the distribution of the test statistic under the null hypothesis of no autocorrelation.
 - (b) Assuming that u_t is autocorrelated, show how you would use the Cochrane-Orcutt method to estimate β_1 and β_2 after correcting for autocorrelation of u_t .

12

- 9. Consider the following distributed lag model: $Y_t = \beta_0 X_t + \beta_1 X_{t-1} + \beta_2 X_{t-2} + u_t, \text{ where } u_t \text{ has }$ mean 0 and is independent of the regressors.
 - (a) What is the short-run multiplier i.e. the immediate response of Y_t to a unit change in X_t ?
 - (b) What is the long-run effect i.e. equilibrium multiplier of a unit change in X_t ?
 - (c) Will an OLS regression provide an unbiased estimator of the model's parameters?

10. You have time series data for two variables: Y_t and X_t . The model that applies for the first T_1 periods is as follows:

$$Y_t = \alpha + \beta X_t + \rho X_t^2 + u_t, t = 1, 2, ..., T_1.$$

For the remaining T_2 periods, the model that applies is as follows:

$$Y_t = \alpha + \beta X_t + \theta X_t^3 + u_t, t = T_1 + 1, ..., T_1 + T_2.$$

- (a) Using the dummy variable approach, show how the two models can be combined into a single model that applies for all the $T_1 + T_2$ periods.
- (b) How would you test the hypothesis that $P = \theta$? Specify the distribution of the test statistic under the null.

.

12

11. Consider the following simple model of a market where Q_s denotes the quantity supplied, Q_d denotes the quantity demanded, and P is price.

$$Q_{d} = \alpha_{1} + \beta_{1}P + \gamma_{1}z_{1} + \gamma_{2}z_{2} + u_{1}$$

$$Q_{s} = \alpha_{2} + \beta_{2}P + u_{2}$$

$$Q_{d} = Q_{s} (\equiv Q)$$

- (a) Write down the reduced form equation for P.
- (b) Can the parameters of the reduced form equation derived above be consistently estimated by OLS? Explain.

एम.ए. (अर्थशास्त्र) सत्रांत परीक्षा जून, 2014

एम.ई.सी.ई.-001 : अर्थमिति विधियाँ

समय : 3 घण्टे

अधिकतम अंक : 100

नोट: भाग क से किन्हीं दो प्रश्नों और भाग ख से किन्हीं **पाँच** प्रश्नों के उत्तर दीजिए।

भाग क

- 1. Y और X चरों के बीच का सम्बन्ध रैखिक अर्थात् $Y = \alpha + \beta X + \epsilon$ है । मान लीजिए, हालाँकि क्लासिकी समिवचालिता अभिधारणा का पालन नहीं किया गया है । विशेष रूप से प्रथम n_1 प्रेक्षणों के लिए, त्रुटि चर ϵ का प्रसरण 1 है, जबिक शेष n_2 प्रेक्षणों के लिए त्रुटि चर ϵ का प्रसरण 4 है ।
 - (क) यदि आप α और β को ओ.एल.एस. (OLS) द्वारा आकलित करते हैं, तो क्या समस्याएँ उत्पन्न होंगी ?
 - (ख) आप α और β को व्यापकीकृत न्यूनतम वर्ग (GLS) से कैसे आकलित करेंगे ?

2. 2 चरों, अर्थात् Y तथा X के बीच का सम्बन्ध इस प्रकार है : $Y = \alpha + \beta X + \epsilon$. आपके आँकड़े सेट में सम्मिलित 6 प्रेक्षण इस प्रकार है :

Y	4	2	0	3	2	1
X	1	1	1	2	2	2

- (क) ओ.एल.एस. समाश्रयण का प्रयोग करते हुए, α और β के आकलन प्राप्त कीजिए ।
- (ख) आपके समाश्रयण का निर्धारण गुणांक (अर्थात् ${
 m R}^2$) क्या है ?
- 3. मान लीजिए कि विचलन रूप में सही मॉडल है, $y_i = \beta x_i + \epsilon_i$ और मान लीजिए कि ϵ_i का प्रसरण σ^2 है । मान लीजिए कि y की बजाय, चर y^* की प्राप्ति मापन प्रक्रिया में की जाती है, जहाँ $y_i^* = y_i + v_i$ है । मान लीजिए कि v_i का प्रसरण σ_v^2 और $Cov(v_i, x_i) = 0$ है । आप पराश्रित चर के रूप में y^* और स्वतंत्र चर के रूप में x के साथ समाश्रयण कीजिए । मान लीजिए कि β का ओ.एल.एस. आकलक $\hat{\beta}$ है ।
 - (क) क्या $\hat{\beta}$, β का अनिभनत आकलक है ? अपने उत्तर का प्रमाण दीजिए ।
 - (ख) दर्शाइए कि $\, \hat{\beta} \,$ का प्रसरण, मापन त्रुटि के प्रसरण $\, \sigma_v^2 \, , \,$ में वर्धमान है ।

- 4. मान लीजिए कि पराश्रित चर Y_i के दो मान हैं : 0 और 1 । मान लीजिए कि x_i स्वतंत्र चरों के सेट को दर्शाता है जिनमें से कुछ सतत् हो सकते हैं । मान लीजिए कि आप Y_i पर x_i के प्रभाव अर्थात् $Y_i = x_i\beta + \epsilon_i$, का अध्ययन करने के लिए रैखिक प्रायिकता मॉडल (LPM) बनाते हैं, जहाँ ϵ_i को शून्य माध्य की प्राप्ति के लिए प्रसामान्यीकृत किया जाता है ।
 - (क) दर्शाइए कि प्रत्येक x_i के लिए त्रुटि चर ϵ_i मात्र दो मानं ले सकता है ।
 - (ख) दर्शाइए कि प्रसरण $(\epsilon_i|x_i)$, ϵ_i आधारित x_i का प्रसरण, $x_i\beta\,(1-x_i\beta)$, के समतुल्य है ।
 - (ग) मॉडल में, ऐसी प्रायिकता क्यों है कि $Y_i = 1$ आधारित x_i , अंतराल [0, 1] में निहित रहने के लिए अवरुद्ध क्यों नहीं है ?

भाग ख

- ${\bf n}$ प्रेक्षणों के आधार पर, मान लीजिए कि प्रतिदर्शज $\hat{{\boldsymbol \theta}}$ इस 5. प्रकार है : $\hat{\theta} = \theta$ जहाँ प्रायिकता $1 - 1/n^2$ है और $\hat{\theta} = 2$ जहाँ प्रायिकता 1/n² है।
 - (क) क्या प्रतिदर्शज संगत है ?
 - (ख) क्या प्रतिदर्शज अनभिनत है ?
 - (ग) क्या प्रतिदर्शज उपगामितः रूप से अनिभनत है ?

12

- चर Y और X के बीच का सम्बन्ध रैखिक अर्थात् 6. $Y = \alpha + \beta X + \varepsilon \frac{1}{8}$
 - (क) सामान्य न्यूनतम वर्ग (ओ.एल.एस.) की सभी क्लासिकी अभिधारणाओं को व्यक्त कीजिए ।
 - (ख) मान लीजिए कि $\hat{\beta}$, β के ओ.एल.एसं. आकलक को दर्शाता है। दर्शाइए कि अनभिनत आकलक (अर्थात् \mathbf{E} (β) = β) प्रमाण करने के लिए सभी क्लासिकी अभिधारणाओं की आवश्यकता नहीं पडती । 12

- 7. चर Y, X_1 और X_2 के बीच का सम्बन्ध रैखिक अर्थात् $Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \varepsilon \frac{3}{6}$
 - (क) मान लीजिए कि \hat{eta}_1 , eta_1 का ओ.एस.एस. आकलक है । यदि X_1 और X_2 के बीच सहसंबंध गुणांक को बढ़ा दिया जाए, X_1 , X_2 और ε के प्रसरणों को स्थिर (fixed) रखते हुए, क्या $\hat{\beta}_1$ का प्रसरण बढ़ता है या घटता है ? चर्चा कीजिए ।
 - (ख) इस प्रश्न के संदर्भ में, यह निर्धारण करने के लिए कि क्या बहुसरेखता एक समस्या है या नहीं, क्लाइन (Klien) विधि का प्रयोग आप कैसे करेंगे ? संक्षेप में बताइए ।

- 8. मान लीजिए कि दो चरों, X तथा Y के लिए आपके पास काल शृंखला आँकड़े हैं । आपका मॉडल इस प्रकार है : $Y_t = \beta_1 + \beta_2 X_t + u_t, \, t = 1, \, 2, \, ..., \, T; \, u_t = \rho u_{t-1} + \epsilon_t,$ जहाँ ϵ_t , i.i.d. है, माध्य 0 और प्रसरण σ^2 के साथ सामान्य ।
 - (क) दर्शाइए कि ब्रुश-गॉडफ्रे (Breusch-Godfrey) परीक्षण का प्रयोग, आप त्रुटि चर ut में स्वसहसम्बन्ध का पता लगाने के लिए कैसे करेंगे । स्वसहसम्बन्ध न होने की शून्य परिकल्पना के अंतर्गत परीक्षण प्रतिदर्शज बंटन को विशेष रूप से दर्शाना याद रखें ।
 - (ख) मान लीजिए कि u_t स्वसहसम्बन्धित है । दर्शाइए कि आप u_t के स्वसहसम्बन्ध को ठीक करने की बात को ध्यान में रखते हुए β_1 और β_2 के आकर्लन के लिए कोन्रेन-ऑरकट (Cochrane-Orcutt) विधि का प्रयोग कैसे करेंगे ।

12

9. निम्नलिखित बंटित पश्चता मॉडल पर विचार कीजिए :

$$Y_{t} = \beta_{0}X_{t} + \beta_{1}X_{t-1} + \beta_{2}X_{t-2} + u_{t}$$

जहाँ $\mathbf{u_t}$ का माध्य $\mathbf{0}$ और जो समाश्रयियों से स्वतंत्र है ।

- (क) अल्पकालिक गुणक अर्थात् X_t में यूनिट परिवर्तन के प्रति Y_t की तात्कालिक प्रतिक्रिया क्या है ?
- (ख) दीर्घकालिक प्रभाव अर्थात् X_t में यूनिट परिवर्तन का साम्य गुणक क्या है ?
- (ग) क्या ओ.एल.एस. प्रणाली समाश्रयण मॉडल के प्राचलों का अनिभनत आकलक प्रदान करेगी ?

10. आपके पास दो चरों : Y_t और X_t के लिए काल शृंखला आँकड़े हैं । प्रथम T_1 कालों के लिए लागू मॉडल इस प्रकार है :

$$Y_t = \alpha + \beta X_t + \rho X_t^2 + u_t, t = 1, 2, ..., T_1.$$

शेष T_2 कालों (समयाविधयों) के लिए लागू मॉडल इस प्रकार है :

$$Y_t = \alpha + \beta X_t + \theta X_t^3 + u_t, t = T_1 + 1, ..., T_1 + T_2.$$

- (क) मूक चर उपागम के प्रयोग से, दर्शाइए कि सभी $T_1 + T_2$ कालों पर लागू किए जाने वाले एकल मॉडल में दो मॉडलों को आपस में जोड़कर कैसे सम्मिलित किया जा सकता है।
- (ख) आप इस परिकल्पना का परीक्षण कैसे करेंगे कि $P = \theta$? परीक्षण प्रतिदर्शज बंटन को शून्य परिकल्पना के अंतर्गत विशेष रूप से दर्शाइए।
- 11. बाज़ार के निम्नलिखित साधारण मॉडल पर विचार कीजिए जहाँ Q_s, आपूर्तित परिमात्रा को और Q_d, माँग की गई परिमात्रा को दर्शाता है और जहाँ P, मूल्य है।

$$\begin{aligned} &Q_d = \alpha_1 + \beta_1 P + \gamma_1 z_1 + \gamma_2 z_2 + u_1 \\ &Q_s = \alpha_2 + \beta_2 P + u_2 \\ &Q_d = Q_s \ (\equiv Q) \end{aligned}$$

- (क) P के लिए परिसीमित स्वरूप समीकरण को लिखिए।
- (ख) क्या ऊपर, व्युत्पन्न परिसीमित स्वरूप समीकरण के प्राचलों को सुसंगत रूप से ओ.एल.एस. द्वारा आकलित किया जा सकता है ? वर्णन कीजिए।

12