B.Tech.

DELVI / DECVI / DCSVI / ACELVI / ACECVI / ACCSVI

00314

Term-End Examination
June, 2014

OIEE-001 : BASICS OF ELECTRICAL ENGINEERING

Time: 2 hours

Maximum Marks: 70

Note: There are eight questions. Attempt any five questions including question no. 1 which is compulsory. All questions carry equal marks. Use of scientific calculator is allowed.

- 1. This question contains objective type questions. Select the most appropriate option. $7\times2=14$
 - (a) If 10 mA current flows through a $2.5~\mathrm{k}\Omega$ resistance, then the power dissipated in it would be
 - (i) 25 W.
 - (ii) 25 mW
 - (iii) 250 W
 - (iv) 250 mW

(b) The value of resistance 'R' shown in given Figure 1 is

Figure 1

- (i) 3.5Ω
- (ii) 4.5Ω
- (iii) 1Ω
- (iv) 2.5Ω
- (c) Maximum power factor in a.c. circuit can be
 - (i) 1.414
 - (ii) 1
 - (iii) 0.707
 - (iv) 0.663
- (d) In a series RLC circuit, the current will be maximum when
 - (i) $X_L > X_C$
 - (ii) $X_L < X_C$
 - (iii) $X_L = X_C$
 - (iv) None of the above

- (e) The form factor of sinusoidal alternating current is
 - (i) 1
 - (ii) 0
 - (iii) 1·11
 - (iv) 1.21
- (f) In a $\Delta \Delta$ system, a phase voltage of 100 V produces a line voltage of
 - (i) 58 V
 - (ii) 71 V
 - (iii) 100 V
 - (iv) 173 V
- (g) An RC circuit has $R=2~\Omega$ and C=4~F. The time constant is
 - (i) 0·125 sec
 - (ii) 2 sec
 - (iii) 0.5 sec
 - (iv) 8 sec
- 2. (a) Find the equivalent resistance R_{ab} in the circuit of Figure 2.

Figure 2

- (b) State and explain Thevenin's theorem and write its limitations and applications. $2\times7=14$
- **3.** (a) What is the difference between primary cell and secondary cell?
 - (b) Explain the construction, working and applications of silver oxide cell. $2\times7=14$
- **4.** (a) Derive an expression for the force experienced by current carrying conductor placed in a uniform magnetic field.
 - (b) An iron ring of 60 cm mean circumference has a cross-sectional area of 8 cm² and there is an air gap of 5 mm width cut in ring. The ring is wound with a coil of 1000 turns carrying a current 2.5 A. Find the flux in air gap. The relative permeability of the iron is 750. $2\times7=14$
- **5.** (a) Explain the self-inductance and mutual inductance.
 - (b) Two coils having 100 and 50 turns respectively are wound on a core with $\mu = 4000 \; \mu_0$, effective core length 60 cm and core area 9 cm².

Find the mutual inductance between the coils, taking coefficient of coupling as one.

 $2 \times 7 = 14$

- 6. (a) Define the form factor and peak factor and obtain the value for a half-rectified sine wave and full-rectified sine wave.
 - (b) Evaluate these complex numbers:

(i)
$$[40 \angle 50^{\circ} + 20 \angle - 30^{\circ}]^{1/2}$$

(ii)
$$\frac{10 \angle -30^{\circ} + (3-4J)}{(2+4J)(3-5J)^{*}} 2 \times 7 = 14$$

- 7. (a) A balanced star connected load of $(8 + j6) \Omega$ per phase is connected to a three-phase 400 V supply. Find the line current, power factor and three-phase power.
 - (b) Derive the relation between phase and line currents and voltages for a three-phase balanced delta connected system. 2×7=14
- 8. Write short notes on any four of the following:

$$4 \times 3 \frac{1}{2} = 14$$

- (a) Kirchhoff's current law and Kirchhoff's voltage law
- (b) Nickel Cadmium cell
- (c) Faraday's laws of electromagnetic induction
- (d) Lenz's law
- (e) Hysteresis loop
- (f) Poly-phase system