No. of Printed Pages: 4

BIEE-033

DIPLOMA IN ELECTRICAL ENGINEERING (DELVI)

O 0 5 2 1 Term-End Examination
June, 2014

BIEE-033: ELECTRICAL CIRCUIT THEORY

Time: 2 hours Maximum Marks: 70

Note: Attempt any **five** questions. All questions carry equal marks.

1. (a) Explain the difference between

6

4

4

- (i) dc voltage and ac voltage
- (ii) Thevenin's equivalent and Norton's equivalent
- (iii) Unilateral and Bilateral element
- (b) State and explain Ohm's law. What are the limitation of Ohm's Law?
- (c) Determine the resistance between the terminals a-b in the network shown in Fig. 1.

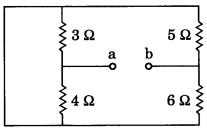
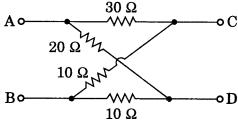



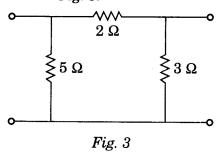
Fig. 1

BIEE-033 1 P.T.O.

- 2. (a) Find the input resistance at AB for the lattice network shown in Fig. 2 when terminals CD are
 - (i) open circuited.
 - (ii) short circuited.

7

7


7

7

4

Fig. 2

(b) Convert the Π -network to its T-equivalent as shown in Fig. 3.

- **3.** (a) State and prove the maximum power transfer theorem.
 - (b) State Superposition theorem and explain it with a suitable example.
- 4. (a) Which method is more suitable to solve a particular circuit, Mesh analysis or Nodal Analysis and why?

BIEE-033

(b) Determine the current through 5Ω resistor in Fig. 4 using both Thevenin's and Norton's Theorem.

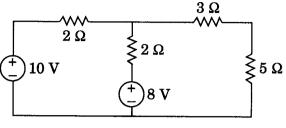


Fig. 4

5. Find rms and average value of half wave rectifier wave output. Also find out rectification efficiency and ripple factor for the above case.

14

10

- 6. (a) A series RLC circuit has R = 10 Ω , L = 0·1 H and C = 8 μ F. Determine
 - (i) the resonant frequency
 - (ii) Q-factor of the circuit at resonance
 - (iii) the half-power frequency

7

(b) Draw the tank circuit and determine the expression of dynamic impedance Z_o and resonant frequency ω_o .

7

7. (a) Find equivalent resistance across a - b terminal of network shown in Fig. 5.

7

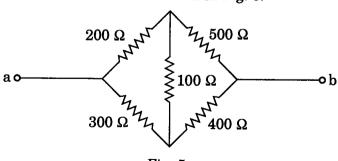


Fig. 5

BIEE-033

(b) In the network shown in Fig. 6, determine

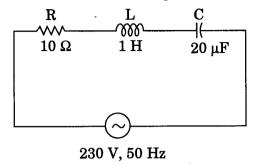


Fig. 6

- (i) total impedance
- (ii) total current
- (iii) current in each branch
- (iv) overall power factor
- (v) volt-ampere
- (vi) active power
- (vii) reactive volt-ampere

7

8. Write short notes on any **four** of the following: $4\times 3\frac{1}{2}=14$

- (a) Reactive power in purely inductive circuit
- (b) Power factor improvement
- (c) Star-Delta Transformation
- (d) Voltage Magnification
- (e) Variation of Z, X_L , X_C , R, $\cos \phi$, I with respect to f