No. of Printed Pages: 4

BIEE-030

DIPLOMA IN ELECTRICAL ENGINEERING (DELVI) / ADVANCED LEVEL CERTIFICATE COURSE IN ELECTRICAL ENGINEERING

00834

(ACELVI)

Term-End Examination June, 2014

BIEE-030 : INDUSTRIAL DRIVES AND CONTROLS

Time: 2 hours

Maximum Marks: 70

Note: Attempt any five questions. All questions carry equal marks. Question no. 1 is compulsory (objective type). Draw neat and clean diagrams, if any required.

1. Attempt all objective type questions:

7×2=14

- (a) Armature voltage of a DC motor can be controlled by means of
 - (i) Cyclo converter
 - (ii) Inverters
 - (iii) AC-DC converter
 - (iv) Bridge rectifier with fixed input
- (b) The speed of DC shunt motor above normal speed can be controlled by
 - (i) Armature voltage control method
 - (ii) Field current control method
 - (iii) Both methods
 - (iv) None of these

BIEE-030

1

P.T.O.

- (c) For controlling the speed of DC motor of 150 HP rating, the following type of converters are normally used.
 - (i) Single phase full converters
 - (ii) Single phase dual converters
 - (iii) Three phase full converters
 - (iv) Three phase dual converters
- (d) A DC chopper circuit controls the average voltage across the DC motor by
 - (i) Controlling the input voltage
 - (ii) Controlling the field current
 - (iii) Controlling the line current
 - (iv) Continuously switching ON and OFF the motor for fixed durations of t_{ON} and t_{OFF} respectively
- (e) A motor armature supplied through phasecontrolled SCR's receives a smoother voltage shape at
 - (i) high motor speed
 - (ii) low motor speed
 - (iii) rated normal motor speed
 - (iv) None of these
- (f) For controlling the speed of a three-phase induction motor, the method generally used is the
 - (i) fixed voltage fixed frequency method
 - (ii) variable voltage variable frequency method
 - (iii) fixed voltage variable frequency method
 - (iv) variable voltage fixed frequency method

- (g) Variable speed drives using stator voltage control are normally
 - (i) open loop system
 - (ii) closed loop system
 - (iii) both are correct
 - (iv) both are incorrect
- 2. (a) Explain how a thyristor bridge can be used for speed control DC shunt motor.
 - (b) List out the applications of phase control converters. 7+7=14
- 3. (a) Explain the working principle of a single phase full wave half controlled bridge rectifier using two SCR's and two diodes.
 - (b) Draw and explain the connection diagram of three phase full wave half controlled rectifier bridge. 7+7=14
- 4. (a) What is a DC chopper? Give various types of chopper configurations with appropriate figures.
 - (b) Explain the Regenerative and Rheostatic braking mode of chopper drives. 7+7=14
- 5. (a) Discuss the speed control of single phase separately excited DC motor.
 - (b) Draw the waveform of voltage and current for semi-converter series motor drive. 7+7=14

- **6.** (a) Compare CSI and VSI fed drives.
 - (b) Discuss briefly the different methods for controlling the speed of wound rotor induction motors. 7+7=14
- 7. (a) Discuss briefly the various methods of speed control of 3-phase cage rotor and induction motor.
 - (b) Draw the circuit of stator voltage control of delta connected induction motor using closed loop method. 7+7=14
- 8. Write short notes on any **four** of the following: $4 \times 3 \frac{1}{2} = 14$
 - (a) Advantages and disadvantages of Thyristorised Drives
 - (b) Two quadrant operation for DC motor
 - (c) Speed regulation by armature voltage control
 - (d) Speed regulation by armature current control
 - (e) Electric braking of motors
 - (f) Block diagram of closed loop operation of induction motor