DIPLOMA IN MECHANICAL ENGINEERING (DME)

ADVANCED LEVEL CERTIFICATE COURSE IN MECHANICAL ENGINEERING (DMEVI/ACMEVI)

01340

Term-End Examination

June, 2014

BME-032 : REFRIGERATION AND AIR-CONDITIONING

Time: 2 hours

Maximum Marks: 70

Note: Attempt any five questions including Question no. 1 which is compulsory. Use of scientific calculator is permitted. Use of refrigeration charts and tables are permitted.

- 1. (a) Answer the following questions in brief: $2\times3=6$
 - (i) Draw simple vapour compression cycle on p-h diagram and write the name of different processes.
 - (ii) Write the definition and formula of specific humidity and relative humidity.
 - (iii) Write the function of following components in a refrigeration system : compressor, condenser, expansion valve and evaporator.

- (b) Choose the most appropriate choice in the following objective type questions: $1 \times 8 = 8$
 - (i) A Carnot refrigerator operates between 320 K and 240 K temperatures. Its coefficient of performance (COP) will be
 - (A) 4
 - **(B)** 3
 - (C) 0·25
 - (D) None of the above
 - (ii) If evaporator pressure decreases, coefficient of performance (COP) of vapour compression cycle will
 - (A) increase
 - (B) remain same
 - (C) decrease
 - (D) either increase or decrease depending upon the refrigerant
 - (iii) The thermodynamic process in expansion device of vapour compression system is considered to be
 - (A) Throttling
 - (B) Isothermal expansion
 - (C) Reversible adiabatic expansion
 - (D) None of the above

(iv)	The following refrigerant is considered to be ozone friendly because it does not harm ozone layer:
	(A) R-12
	(B) R-22
	(C) R-11
	(D) R-134a
(v)	The temperature and relative humidity in air-conditioning (for human comfort) are maintained as
	(A) 28°C and 70%
	(B) $25 \pm 1^{\circ}$ C and $50 \pm 5\%$
	(C) 30 ± 1 °C and $60 \pm 5\%$
	(D) 22°C and 50% respectively
(vi)	One ton of refrigeration is equivalent to cooling at a rate of
	(A) 50·4 kcal/min
	(R) 3.5167 kJ/s

(C) Both (A) and (B)

- (vii) If clearance is increased in reciprocating compressor, compression work
 - (A) increases
 - (B) decreases
 - (C) remains same
 - (D) may increase or decrease depending upon value of clearance factor

(viii) Which statement is **not** correct?

- (A) Capillary tube is used as expansion device in domestic refrigerators.
- (B) Reciprocating type compressors are used in small capacity refrigeration systems.
- (C) Electrical power is mainly used to run vapour absorption systems.
- (D) Electrical power is used to run vapour compression systems.

2. (a) List various applications of refrigeration and air-conditioning and describe them in brief.

10

(b) An ice plant produces 100 kg ice at -10° C from water at 5°C in 24 hours. Calculate the capacity of plant in tons. If it consumes 2 kW power, what will be COP of plant? (Given: C_p of water = 4·19 kJ/kg-K, C_p of ice = 2·0 kJ/kg-K and latent heat of fusion of ice = 335 kJ/kg).

4

- 3. (a) What is the effect of following on performance of simple vapour compression cycle?
 - (i) Increase in condenser pressure.
 - (ii) Suction vapour superheat.

Show the effects by drawing cycle on p-h diagram.

6

(b) What are the main differences between a vapour compression and vapour absorption system? Draw a lithium bromide water vapour absorption system and explain its working.

2+6

- **4.** (a) Draw a neat sketch of an evaporative condenser and explain its working.
 - (b) Write main differences between flooded and dry expansion evaporator. Describe the working of dry expansion evaporator.

5

4

4

5

5

(c) Derive the formula of clearance volumetric efficiency of a reciprocating compressor as given below:

$$\eta_{cv} = 1 + C - C \left(\frac{p_2}{p_1}\right)^{1/r}$$

where C is clearance factor, $\frac{p_2}{p_1}$ is pressure ratio and r is ratio of specific heats?

- 5. (a) Write the functions of a thermostatic expansion valve. Where is it used? Also list different parts of which it comprises.
 - (b) 1000 kg of fruits enter at 25°C into a freezing chamber maintained at −10° C. Freezing takes place at −10°C after 6 hours. The latent heat of freezing is 110 kJ/kg and specific heat of fruits is 1.35 kJ/kg-K. Calculate the refrigeration capacity of plant in tons.
 - (c) Describe in brief the various desirable thermodynamic properties of refrigerants.

6.	(a)	What do you mean by thermodynamic bulb temperature or adiabatic saturation.	
	(b)	Define the following:	3
		(i) Degree of saturation	
		(ii) Specific humidity	
	(c)	Write short notes on the following:	2×3=6
		(i) Comfort air-conditioning	
		(ii) Air blast freezer	
		(iii) Transport refrigeration	