No. of Printed Pages: 5

BCE-046

DIPLOMA IN CIVIL ENGINEERING DCLE(G)

Term-End Examination June, 2014

00990

BCE-046 : SOIL MECHANICS AND FOUNDATION ENGINEERING

Time: 2 hours

Maximum Marks: 70

Note: Question no. 1 is compulsory. Attempt any four more questions out of question numbers 2 to 8. All questions carry equal marks.

1. Choose the correct alternative:

7×2=14

- (a) The soils which are deposited at the bottom of lakes are known as
 - (i) alluvial soils
 - (ii) aeolian soils
 - (iii) lacustrine soils
 - (iv) marine soils
- (b) The corrections normally applied to hydrometer readings are
 - (i) meniscus correction
 - (ii) temperature correction
 - (iii) dispersing agent correction
 - (iv) All of the above

BCE-046 1 P.T.O.

- (c) The effective stress is equal to
 - (i) total stress minus neutral stress
 - (ii) total stress
 - (iii) neutral stress
 - (iv) total stress plus neutral stress
- (d) The shear test under all the three drainage conditions can be performed with complete control in
 - (i) direct shear test
 - (ii) triaxial test
 - (iii) unconfined compression test
 - (iv) vane shear test
- (e) Area Ratio (A_r) can be expressed as
 - $(i) \qquad \frac{D_2^4 D_1^4}{D_1}$
 - $(ii) \quad \frac{D_{2}^{3}-D_{1}^{3}}{D_{1}}$
 - (iii) $\frac{D_2^2 D_1^2}{D_1}$
 - $(iv) \quad \frac{D_2 D_1}{D_1}$
- (f) The principal modes of failure of shallow foundation are
 - (i) General shear failure
 - (ii) Local shear failure
 - (iii) Punching shear failure
 - (iv) All of the above

(g)	Which of the following is not a deep foundation?	
	(i) Grillage foundation	
	(ii) Pile foundation	
	(iii) Pier foundation	
	(iv) Well foundation	
(a)	Using phase relationships, show that	
	$\gamma_{\mathbf{sat}} = \left(\frac{\mathbf{G} + \mathbf{e}}{1 + \mathbf{e}}\right) \gamma_{\mathbf{w}}$	7
(b)	A sand sample has a porosity of 35% and specific gravity of 2.70 . Calculate its	
	(i) Voids ratio	
	(ii) Dry unit weight	
	(iii) Submerged unit weight	
	Assume $\gamma_{\rm w} = 10 \text{ kN/m}^3$.	7
(a)	Explain the procedure of determination of Shrinkage Limit in the laboratory.	7
(b)	The grading curve of a soil gives the following values:	
	$D_{co} = 0.20 \text{ mm}$ $D_{co} = 0.50 \text{ mm}$ and	

2.

3.

 $D_{60} = 0.75 \text{ mm}$

Determine the uniformity coefficient (C_u) and coefficient of curvature (C_c) .

4.	(a)	Describe Darcy's Law. Also discuss validity of Darcy's Law.	7
	(b)	A sand deposit is made up of three horizontal layers of equal thickness. The permeability of top, middle and bottom layers is 3×10^{-5} mm/sec, 4×10^{-5} mm/sec and 5×10^{-5} mm/sec respectively. Find the equivalent permeability in the horizontal and vertical directions.	7
5.	(a)	Describe the advantages and limitations of Triaxial Shear Test.	7
	(b)	In an unconfined compression test on a soft clay, the following data was observed:	
		Length of sample, $L_0 = 125 \text{ mm}$	
		Initial area of sample, $A_0 = 1250 \text{ mm}^2$	
		Extension of spring at failure, Δ_L = 25 mm	
		Spring constant = 12 N/mm	
		Compression of the sample at failure = 25 mm	
		Determine the unconfined compressive strength of the soil specimen using corrected	-
		area.	7
6.	(a)	Describe the effect of moisture content on compaction.	7
	(b)	Explain the various purposes for which soil exploration is carried out.	7

- **7.** (a) Describe the principal modes of failure of shallow foundations.
 - (b) Compute the ultimate bearing capacity of a strip footing of width 2·0 m and 1·50 m below the surface of a moist soil having cohesion of 20 kN/m². Assume general shear failure. Use Terzaghi's analysis.

Take $\gamma = 20 \text{ kN/m}^3$

 $N_c = 52.6$, $N_q = 36.5$, and $N_{\gamma} = 35.0$.

- 8. (a) What do you mean by a well foundation?
 Discuss its use.
 - (b) A precast concrete pile is being driven with 60 kN hammer having a free fall of 1.5 m. If the penetration in the last blow is 10 mm, determine the allowable load carrying capacity of the pile according to Engineering News Formula.

Take C = 25 mm and F = 6.

7