B.Tech. MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING) / B.Tech. AEROSPACE ENGINEERING (BTAE)

Term-End Examination

01190

June, 2014

BME-021: PRINCIPLES OF ELECTRICAL AND ELECTRONICS SCIENCES

Time: 3 hours

Maximum Marks: 70

Note: Answer seven questions in all. Question number 1 is compulsory. Attempt any three questions from Section A and any three questions from Section B. Use of scientific calculator is permitted.

- 1. State whether the following assertions are true or false: $10 \times 1 = 10$
 - (i) Conductor having high conductivity has high resistivity.
 - (ii) A constant voltage source has zero internal resistance.
 - (iii) Resistance of insulators increases with increase in temperature.

- (iv) Kirchhoff's current law states that the vector sum of the currents meeting at a junction is zero.
- (v) Reluctance is the property of a magnetic material that aids the passage of magnetic flux in it.
- (vi) Piezo-electric effect is one in which an emf is produced when symmetrical crystalline materials are placed under stress.
- (vii) A program counter points to the memory address from which the next machine code is to be collected.
- (viii) An ideal OP-AMP possesses zero gain, zero input impedance and infinite output impedance.
- (ix) ROM (Read Only Memory) is a non-volatile memory.
- (x) A thyristor has low on-state voltage and an even smaller turn-on current.

SECTION A

Answer any three questions from this section.

- 2. (a) State and explain Norton's theorem.
 - (b) Find the current through the 2Ω resistance in the network shown in Figure 1 using Theyenin's theorem.

- 3. (a) Define cycle, time period, frequency, amplitude, phase and phase difference with reference to an a.c. waveform.
 - (b) A capacitor of 100 μF is connected in series with a coil of resistance 5 Ω and inductance 0.12 H. This combination is supplied by a 500 V, 50 Hz supply. Calculate
 - (i) the rms value of the circuit current
 - (ii) the power factor
 - (iii) the voltage across the capacitor.

4

6

5

5

- 4. Explain magnetic hysteresis. (a) 5 A circular ring of mild steel has a diameter (b) of 20 cm and a 2 mm side air gap. The cross-sectional area of the ring is 3.2 cm². Estimate the mmf required to establish a 0.6 mWb. Assume relative permeability of mild steel equal to 900. 5 Compare star and delta connected systems. 5. (a) 5 (b) Three similar coils each of resistance 28 Ω and inductance 0.1 H are connected in star. If the supply voltage is 230 V, 50 Hz, calculate the line current and the total power absorbed. 5
- 6. (a) Explain open circuit (O.C.) and short circuit (S.C.) tests on a transformer. What information do we get from these tests?
 - (b) Write a brief note on operation of a universal motor.

6

4

SECTION B

Attempt any three questions from this section.

7.	(a)	Explain how an ADC (analog to digital converter) works.	5
	(b)	Discuss the logical instructions used in a microprocessor with examples.	5
8.	(a)	Explain the $I - V$ characteristics of a zener diode.	5
	(b)	Describe the operation of a full wave bridge rectifier.	5
9.	(a)	Discuss the blocking operation of an IGBT.	5
	(b)	What are the functions of counters? What is the difference between synchronous and asynchronous counters?	5
10.	(a)	State and expalin De-Morgan's theorems. Hence verify that $A + BC = (A + B) (A + C)$.	7
	(b)	Explain the 'AND' and 'OR' logic gates with truth table.	3
11.	(a)	Explain the use of 555 timer I.C. as a monostable multivibrator.	5
	(b)	Discuss the working of SISO (serial in serial out) and SIPO (serial in parallel out)	
		shift registers.	5