No. of Printed Pages: 3

BME-008

Maximum Marks: 70

B.Tech. MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING) BTMEVI

00950

Time: 3 hours

Term-End Examination June, 2014

BME-008: MACHINING TECHNOLOGY

Note: Attempt any five questions. All questions carry

	_	rual marks. Use of scientific calculator ermitted.	is
1.	(a)	Explain the mechanics of chip formation.	4
	(b)	Describe the sources of heat generation in metal cutting.	5
	(c)	List and briefly explain the factors affecting tool life.	5
2.	(a)	Write an equation that can express the effect of cutting speed, feed and depth of cut on tool life.	4
	(b)	Differentiate between abrasion wear and adhesion wear.	5
	(c)	Name different mechanisms of tool wear, and write the conditions under which each will be dominant.	5
BME-008		1 P.T	

3.	(a)	A grinding wheel carries the following marking: 39-C-120-K-4-V. What does this signify?	4
	(b)	Explain the bonding materials used in a grinding wheel.	5
	(c)	What do you understand by dressing of a grinding wheel? Also explain truing and balancing of a grinding wheel.	5
4.	(a)	Briefly explain the special features of the creep feed grinding.	5
	(b)	Write some applications of centreless external grinding.	4
	(c)	During surface grinding the table speed is kept as 30 m/min, and grinding wheel peripheral speed is 1800 m/min. The depth of cut is 0.05 mm and the active grains density is 2 per mm ² . The wheel diameter is 200 mm. Find out the spindle speed of the grinding wheel and chip length in mm.	5
5.	(a)	What are the factors responsible for producing better surface finish in lapping as compared to honing? Explain in brief.	7
	(b)	Define the term 'burr', and sketch it along with the finished surface of part.	7

6.	(a)	Classify the surface improvement techniques and explain any one.	<i>4</i> +3
	(b)	Write the type and size of the abrasive and magnetic particles used in Magnetic Abrasive Finishing.	4
	(c)	Define 'Magnetic Flux Density' used in micro-machining.	3
7.	(a)	Explain the Electron Beam Machining (EBM) with the help of suitable schematic diagram.	7
	(b)	Explain the mechanics of metal removal in EDM with the help of neat sketch.	7
8.	(a)	Give a brief classification of advanced machining processes on the basis of energy used in the metal removing.	7
	(b)	Sketch the effects of following parameters on metal removal rate (MRR) during EDM using RC-circuit:	3
		(i) Resistance	
		(ii) Capacitance	
		(iii) Current density	
	(c)	Explain how the stratified wire works in wire EDM.	4