No. of Printed Pages: 4

BIEE-008

B.Tech. - VIEP - ELECTRICAL ENGINEERING (BTELVI)

00126

Term-End Examination
June, 2014

BIEE-008 : ELECTRO-MECHANICAL ENERGY CONVERSION - I

Time: 3 hours

Maximum Marks: 70

Note: Attempt any **seven** questions out of ten. Use of scientific calculator is allowed. Assume suitable assumption if needed.

- 1. (a) State the advantages of analysing energy-conversion devices by field-energy concept.
 - concept. 5
 - (b) An air cored coil is required to be 3.5 cm long and to have an average cross-sectional area of 3 cm². The coils should have an inductance of 700 μH . Find the number of turns needed.

5

2. (a) Distinguish between singly-excited and doubly-excited magnetic systems.

5

	(b) In a doubly-excited rotary machine, t inductance coefficients are						
		$L_{11} = 1 \cdot 1 + 0 \cdot 4 \cos 2\theta$					
	•	$L_{22} = 0.03 + 0.005 \cos 2\theta$					
		$L_{12} = 0.2 \cos \theta$					
		The exciting currents are $i_1 = 8$ A and					
		i ₂ = 50 A. Obtain the torque/angular					
		displacement relation.	5				
3.	(a)	What is armature reaction? How does it affect the operation of a d.c. machine?					
	(b)	Explain the concept of electrical degrees. How is the electrical angle of the voltage in a rotor conductor related to the mechanical angle of the machine's shaft?	5				
4.	(a)	What are compensating windings? What is their most serious disadvantage?					
	(b)	Derive the equation for emf generated in the armature of d.c. generator.	5				
5.	(a)	Describe with a neat diagram, the working of a three-point starter used for a d.c. shunt motor.	5				
	(b)	Describe Hopkinson's test for two identical d.c. shunt machines coupled mechanically.	5				
6.	(a)	Discuss the effect of speed and size on the efficiency of d.c. machines.	5				
	(b)	Draw a block diagram showing the dynamic behaviour of a separately excited d.c. motor. Derive the necessary equations on which the diagram is based.	£				

7. (a) List and describe the types of losses that occur in a transformer with the help of equivalent circuit model.

5

(b) Draw and explain no-load phasor diagram of a single phase transformer.

5

8. (a) Describe the short-circuit (SC) test for single phase transformer. Why does the SC test essentially show only i²R losses and not excitation losses in transformer?

5

(b) A 100 VA, 120/12 V transformer is to be connected so as to form a step-up autotransformer (see fig.). A primary voltage of 120 V is applied to the transformer.

- (i) What is the secondary voltage of the transformer?
- (ii) What is the maximum volt-ampere rating in this mode of operation?
- (iii) Calculate rating advantage of this autotransformer over the conventional transformer's rating in 120/12 V operation.

5

9.	(a)	Discuss	\mathbf{the}	points	of	sim	ilarity	in
		transform	ners	and	rotating		electrical	
		machines	s.					

5

(b) What happens to a transformer when it is first connected to a power line? Can anything be done to mitigate this problem?

5

10. (a) Discuss any two ways of connection of three-phase transformers with relevant relations amongst voltages and currents.

5

(b) A 20 KVA, 20,000/480 V, 60 Hz distribution transformer is tested with the following results:

 $\begin{array}{lll} \text{Open-circuit test} & \text{Short-circuit test} \\ \text{(measured from} & \text{(measured from primary)} \\ \text{V}_{OC} = 480 \text{ V} & \text{V}_{SC} = 1130 \text{ V} \\ \text{I}_{OC} = 1.51 \text{ A} & \text{I}_{SC} = 1.00 \text{ A} \\ \text{P}_{OC} = 271 \text{ W} & \text{P}_{SC} = 260 \text{ W} \end{array}$

5

Find the per unit equivalent circuit of this transformer at 60 Hz.