B.Tech. – VIEP – ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

00364

Term-End Examination

June, 2014

BIEL-002 : ANALOG AND INTEGRATED CIRCUITS DESIGN

Time: 3 hours Maximum Marks: 70

Note: Attempt any **seven** questions. All questions carry equal marks. Use of scientific calculator is permitted.

1. (a) Draw the circuit diagram of a differential amplifier. Identify the inputs and outputs for inverting, non-inverting and single ended configuration.

5

(b) Explain the concept of current mirror and state its use.

5

2. (a) Draw the schematic block diagram of the basic Op-Amp. Explain the significance of virtual ground in the basic inverting amplifier.

5

(b) Draw the inverting and non-inverting amplifier circuits of an Op-Amp in closed loop configuration. Obtain expression for closed loop gain in these circuits.

5

3.	(a)	Draw the circuit diagram that shows how the Op-Amp may be used to obtain the sum of two input voltages. Derive the expression of output voltage. What precautions must be observed in the use of this circuit?	5
	(b)	Explain how Op-Amp is used as a difference amplifier. Show that drift is reduced in a difference amplifier.	
4.	(a)	Draw the schematic diagram of classic 3-Op-Amp instrumentation amplifier. Explain its operation when the input is of differential and common mode signals.	5
	(b)	A 5 mV, 1 kHz sinusoidal signal is applied to the input of an Op-Amp integrator for which R = 100 k Ω and C = 1 μ F. Find the output voltage.	5
5.	(a)	Explain how Op-Amp is used as comparator. Give limitations of Op-Amp as comparator.	5
	(b)	Draw schematically an Op-Amp Schmitt trigger and explain its working. Name an application of Schmitt trigger.	5
6.	(a)	Draw the circuit of a square wave generator using Op-Amp. Explain its operation, by showing the capacitor voltage waveform.	5
		wave101111.	υ

(b)

Explain the working of precision rectifier and peak detector with circuit diagrams.

5

5

7.	(a)	What is the saw tooth wave generator? Explain how Op-Amp is used as saw tooth wave generator and also explain its working. 5
	(b)	Explain the use of IC-555 as Astable Multivibrator. 5
8.	(a)	What is an active filter? Give the advantages of an active filter over a passive filter.
	(b)	Explain Butterworth low pass filter. How does the response characteristic of Butterworth filter change with increasing order of filter?
9.	(a)	Draw the block diagram of PLL and explain the basic idea of locking onto the incoming frequency. 5
	(b)	Explain working of Log and Antilog amplifiers using Op-Amp. 5
10.	Write	e short notes on the following : $2 \times 5 = 10$
	(a)	Multivibrators
	(b)	Applications of PLL