MCA (Revised) Term-End Examination June, 2014

MCSE-004 : NUMERICAL AND STATISTICAL COMPUTING

Time : 3 hours

Maximum Marks : 100

- **Note**: Question number **1** is **compulsory**. Attempt **any three** questions from the rest. Use of calculators is **allowed**.
- 1. (a) Determine the root of the equation 5 $2x = \cos x + 3$ correct to three decimal places.
 - (b) Solve the following system of equations by **5** using Gauss Elimination method.

2x + y + z = 103x + 2y + 3z = 18x + 4y + 9z = 16

(c) Using Lagrange interpolation, determine the 5 value of log₁₀ 301, from the tabulated data given below :

X 300		304	305	307	
$\log_{10} X$	2.4771	2.4829	2.4843	2.4871	

MCSE-004

P.T.O.

(d)	Ten coins are thrown simultaneously, Find the probability of getting at least seven heads.	5
(e)	What do you mean by "Goodness to fit test" ? What for the said test is required ?	5
(f)	Calculate the value of the integral $\int_{4}^{5.2} \log x dx$ by using Simpsons 3/8 rule	5
(g)	Find the probability that an individual's IQ score is between 91 and 121. Provided, the individuals IQ score has a Normal distribution N (100, 15 ²).	5
(h)	Write short note on following :(i) Non Linear Regression(ii) Acceptance Rejection Method	5
(a)	Determine the value of expression $X = \sqrt{3} + \sqrt{5} + \sqrt{7}$; accurate up to 4 significant digits, also find the absolute and relative errors	5
(b)	Determine the value of Y using Euler's method, when $X = 0.1$ Given $Y(0) = 1$ and $Y' = X^2 + Y$.	5
(c)	Find the value of $\Delta \tan^{-1} x$, where Δ is the difference operator, with differencing step size 'h'.	3
(d)	Solve the following system of equations by using LU Decomposition method. x + y = 2; $2x + 3y = 5$	7

MCSE-004

2.

3. (a) Solve the initial value problem given below, **10** By using Runge - Kutta Method.

 $\frac{dy}{dx} = y - x$ with y(0) = 2 and h = 0.1 also find y(0.1) and y(0.2) correct to four decimal places.

(b) Determine the Goodness to fit parameter 'R' 10 for the data given below.

X	100	110	120	130	140	150	160	170	180	190
Y	45	51	54	61	66	70	74	78	85	89

Analyse the results and comment on whether the predicted line fits well into the data or not.

4. (a) Develop the difference table for the data **10** given below and use it to find the first and tenth term for the given data.

X	3	3 4 5		6 7		8	9
Y	2.7	6.4	12.5	21.6	34.3	51.2	72.9

- (b) Find the smallest root of the equation 10 $f(x) = x^3 - 6x^2 + 11x - 6 = 0$ by using Newton - Raphson method. Give two drawbacks of Newton - Raphson method.
- 5. (a) In a partially destroyed laboratory record 10 of an analysis of correlation data, the following data are only legible :
 - (i) Variance of X = 9
 - (ii) Regression equation : 8X - 10Y + 66 = 040X - 18Y = 214

MCSE-004

Using this legible data determine the following :

- (i) Mean value of X and Y
- (ii) Correlation coefficient between X and Y
- (iii) Standard Deviation of Y

(b) Evaluate the integral I =
$$\int_{0}^{1} \frac{dx}{1+x}$$
 by using 5

composite Trapezoidal rule with 2 and 4 sub intervals.

(c) Find the approximate value of the root of 5 the equation $x^3 + x - 1 = 0$, near x = 1. Using Regula-Falsi method, twice.