07459

MCA (Revised)

Term-End Examination June, 2014

MCS-033 : ADVANCED DISCRETE MATHEMATICS

Time: 2 hours Maximum Marks: 50

Note: Question **No. 1** is **compulsory**. Attempt **any three** from the rest.

- 1. (a) Find the order and degree of the following recurrences relations. Determine whether they are homogeneous or non-homogeneous.
 - (i) $a_n = a_0 \ a_{n-1} + a_1 \ a_{n-1} + \dots + a_{n-1} \ a_0$
 - (ii) $a_n^2 + a_{n-1}^2 = -1$
 - (b) Define:

4

- (i) Simple graph
 - (ii) Finite and infinite graph
- (iii) Isolated vertex
- (iv) Subgraph
- (c) Solve the recurrence relation $a_{n+1}-1.5a_n=0$
- (d) Find the generating function of the following $a_n = 3^n + 5^n$

(e) Find the chromatic number of the given graph.

2

3. (a) Find the solution to the recurrence relation
$$a_n = -3a_{n-1} - 3a_{n-2} - a_{n-3}$$
 with $a_0 = 1$, $a_1 = -2$, $a_2 = -1$

4. (a) Find Euler's path in the graph given below:

(b) Show that k_4 is planar graph.

3

4

- (c) Solve the recurrence relation $a_n + 2a_{n-1} + 2a_{n-2} = 0$ given that $a_0 = 0$, $a_1 = -1$.
- 5. (a) Solve the recurrence relation 5 $a_{n+2}-5a_{n+1}+6a_n=2$, $a_0=1$, $a_1=2$ using the method of generating function.
 - (b) State and prove Hand Shaking Theorem. 5