No. of Printed Pages: 3

MCS-031

10829

MCA (Revised)

Term-End Examination

June, 2014

MCS-031 : DESIGN AND ANALYSIS OF ALGORITHMS

Time: 3 hours Maximum Marks: 100 Question No. 1 is compulsory. Attempt any three from Note: the remaining questions. What is big O notation? How is it different 1. (a) 4 from Ω notation? Give an analysis of merge-sort. For (b) 6 simplicity, assume that the number of elements i.e. n is an exact power of two. Explain limitations of Strassen's Algorithm (c) 5 for matrix multiplication. Use Master's method to find tight (d) 5 asymptotic bounds for the following recurrence: T(n) = T(n/2) + n(e) Give a divide and conquer based algorithm 4 to find ith largest element in an array of size n. What is regular expression? Write a regular (f) 6 expression over $\sum = \{a, b\}$ to generate all string that start with a and end with two b's.

(g) Write binary search algorithm and evaluate its time complexity in the best, average and worst cases.

6

8

6

5

- (h) Explain NP- complete problem with the help of an example.
- 2. (a) Find the topological ordering of the 6 following graph:

- (b) Write Kruskal's algorithm and determine its time complexity.
- (c) Represent the following graph using
 (i) Array; and (ii) Adjancy List

- 3. (a) Sort the given list using bubble sort and show the steps involved in the process: 2, 7, 5, 10, 21, 3
 - (b) Write Euclid's algorithm for finding 4 Greatest Common Divisor (G.C.D) of two natural numbers m and n.
 - (c) What is the benefit of preconditioning a problem space? Explain using an example.

(d) Consider the CFG: $S \rightarrow SS \mid X \text{ a } X \text{ a } X \mid \land$ $X \rightarrow bX \mid \land$

Explain the language generated by this CFG

5

- **4.** (a) What is Push Down Automata? How is it different from Finite Automata.
 - (b) What is MinMax Algorithm? Explain how Alpha-Beta pruning helps in improving MinMax algorithm.
 - (c) What is best case analysis? Perform the best case analysis for Quick Sort.
- 5. (a) Explain each of the following, with an 12 appropriate example:
 - (i) NIM/Marienbad Game
 - (ii) Principle of Mathematical Induction
 - (iii) Halting Problem
 - (b) Trace how Depth First Search Traverses the following tree, when starting at node A.

