BACHELOR OF COMPUTER APPLICATIONS (PRE-REVISED) **Term-End Examination**

June, 2014

CS-73 : THEORY OF COMPUTER SCIENCE

တ 42

02

Maximum Marks: 75

Q. No. 1 is compulsory. Attempt any three from the Note : rest.

1.	(a)	Convert following NFA to DFA :	5
		$\xrightarrow{q_1} a, b$	
	(b)	Write regular expression for the following regular sets : 3+3= (i) {00, 001, 0011, 00111,}}	=6
		(ii) set of all strings over {0, 1} containing at the most one 0.	
	(c)	Convert the following context free grammar to Chomsky Normal Form :	5
		$S \rightarrow aAbB A \rightarrow Ab/b B \rightarrow Bb/a$	
	(d)	Write a short note on halting problem of Turing machines.	5
	(e)	Differentiate between a recursive and recursively enumerable language.	5
	(f)	For $F(x) = 2x^3 + 3x^2 + 1$ prove that $F(x) = 0$ (x ⁿ) for $n \ge 4$	4

2. (a) Design a Turing machine to accept the 6 language.

 $L = \{\omega \ \omega^R / \omega \text{ is a string over } \{a, b\}\}$

 ω^{R} is the reverse of ω

- (b) Describe the concept of Universal Turing **4** Machine (UTM).
- (c) A proper subtraction function is defined as 5 follows :

sub (x, y) = x - y if $x \ge y$

 $\operatorname{sub}(x, y) = 0$ if x < y

Show that proper subtraction function is primitive recursive.

3. (a) Write short on NP Hard and NP complete 12 problems. Show that the clique problem is NP complete.

(A k-clique is a subset of k vertices in a graph such that vertex in the subset is connected to all other vertices in that subset).

- (b) Describe any one application of finite 3 automation.
- 4. (a) Design a push down automation for the 5 following context free grammar :

$$S \rightarrow aB/bA \quad A \rightarrow aS/bAA/a$$

- $B \rightarrow bS/aBB/b$
- (b) Design a push down automation to 5 implement the language :

 $L = \{a^n b^n / n \ge 1\}$

(c) Prove that if the languages L_1 and L_2 are 5 context free then the language

 $L = L_1 L_2$ is also context free.

5. (a) Convert the following Moore Machine to 5 equivalent Mealy machine :

Current State	Input	Output	
State	а	b	
$\rightarrow q_0$	q_3	q_2	0
q ₁	\mathbf{q}_0	q_1	1
q ₂	q ₂	q_0	1
q ₃	q ₂	q_1	0

- (b) Design a DFA corresponding to regular 5 expression 1*(10)*
- (c) State and prove pumping lemma for regular 5 sets.