CS-71

BACHELOR OF COMPUTER APPLICATIONS (PRE-REVISED) Term-End Examination June, 2014 CS-71 : COMPUTER ORIENTED NUMERICAL TECHNIOUES

Time : 3	3 hours	Ν	Лахітит	Marks : 75
Note :	Question number 1	is compulsor	y. Attemp	ot any three
	from question numb	er 2 to 5. Calc	culator is	allowed.

1.	(a)	Show that $a(b-c)\neq ab-ac$	
		where $a = 0.5555 \times 10^{1}$, $b = 0.4545 \times 10^{1}$	10 ⁴ ,
		$c = 0.4535 \times 10^1$ using four decimal d	igit
		arithmetic with rounding.	6x5=30

- (b) Give floating point representation of following in two decimal digits and four decimal digits with rounding 0.4861416×10^2 , 2.3748, 0.0436
- (c) Solve using Cramer's Rule

x + y + z = 72x + 3y + 2z = 174x + 9y + z = 37

(d) Perform three iteration to find cube root of 41 using Newton-Raphson Method.

CS-71

(e) Find Lagrange Interpolating polynomial for the following :

x	2.5	3.5			
f(x)	6	8			
Also find f(3) ?					

- (f) Solve the following initial value problem using Heun's method of $O(h^2)$ where $y' = -ty^2$, y(2) = 1 find y(2.1); h = 0.1.
- 2. (a) Find real root of the equation $f(x) = x^3 4x 9 = 0$ using Bisection Method in four iterations. 3x5=15
 - (b) Solve the following system of equation by Gauss Elimination Method 54x + y + z = 1102x + 15y + 6z = 72-x + 6y + 27z = 85
 - (c) Find root of the equation $f(x) = x \log_{10} x 1.2$ by Regular Falsi Method upto 4 decimal places.
- 3. (a)Perform three iteration using Jacobi Method
for following system of equation3x5=15

[-	-8	1	1	$\begin{bmatrix} x_1 \end{bmatrix}$		$\lceil 1 \rceil$
	1	-5	-1	<i>x</i> ₂	=	16
	1	1	-4	$\begin{bmatrix} x_3 \end{bmatrix}$		7

(b) Evaluate $\int_0^1 \frac{dx}{1+x^2}$ by subdividing the

interval (0,1) into 6 equal parts using $\frac{1}{3}$ rd Simpson's Rule.

CS-71

- (c) Apply Secant method to find a root of the equation $2x^3 + 3x^2 + 3x + 1 = 0$ with initial approximations as $x_0 = -0.2$, $x_1 = -0.4$.
- 4. (a) Use Taylor Series Method to solve the equation 3x5=15 $y' = x^2 + y^2$ for x = 0.25 and x = 0.5

given that
$$y(0) = 1$$
.

(b) Find Newton's Backward Difference form of interpolating polynomial for the data

x	4	6	8	10
f(x)	19	40	79	142

Hence interpolate *f*(9).

- (c) Evaluate $\int_{0}^{1} \frac{dx}{1+x^{2}}$ by subdividing the interval (0,1) into 6 equal parts using Trapezoidal Rule.
- 5. (a) Find *y* where x = 0.1, given that y(0) = 1 and $y' = x^2 + y$ with step length h = 0.05 using Euler Method. 3x5=15
 - (b) Given $\frac{dy}{dx} = \frac{y-x}{y+x}$, y(0) = 1, h = 0.2 find

y(0.2) up to 4 decimal places using Runge-Kutta Method of fourth order.

(c) Find value of x where y=3 from the following

x	4	7	10	12
y	- 1	1	2	4

Using Lagranges inverse interpolation ?