No. of Printed Pages : 4

11604

MCA (Revised)

Term-End Examination

June, 2013

MCS-031 : DESIGN AND ANALYSIS OF ALGORITHMS

Tim	e : 3 ha	ours	Maximum Marks	Maximum Marks : 100			
<i>Note</i> : Question <i>No.</i> 1 is <i>compulsory</i> . Attempt any threather the rest of questions.							
1.	(a)	(i)	Write an algorithm to sort the given array of numbers using Insertion Sort and explain the necessary steps. Also write the time complexity in the worst case.	6			
		(ii)	Prove that function :	6			
			$f(x) = 2x^3 + \frac{x^2}{4} + 100$ is $\theta(x^3)$.				
	(b)	(i)	Solve the following recurrence relation :	5			
			$f_n - f_{n-1} - f_{n-2} = 0$ s.t. $f_0 = 0$ $f_1 = 1$				
		(ii)	Prove that the running time of binary search algorithm in worst case is $0 (\log_2 n)$.	5			
MC	S-031		1 P.	т.о.			

- (c) (i) Define undecidability. List any three 5 undecidable problem.
 - (ii) Discuss, why do we use dynamic 5
 programming approach to solve
 matrix chain multiplication problem.
- (d) (i) There are five bottles of medicine, 5
 namely A, B, C, D and E. The capacity of each bottle in term of number of tablets it can hold is given below :

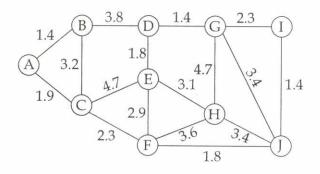
Bottle A: 10 tablets, Bottle B: 60 tables,

Bottle C: 130 tablets,

Bottle D : 240 tablets, Bottle E : 100 tablets.

Give a greedy approach to store 560 tablets by using minimum number of bottles.

(ii) Analyse the time complexity for the 3 following :


for $(i=1; i \le n; i=i*2)$ for $(j=1; j \le n; j++)$ Count=count+2;

- **2.** (a) If L_1 and L_2 are regular languages. Prove **5** that $L_1 \cup L_2$ is also regular.
 - (b) Write a recursive function to calculate the sum of all elements in an integer array.

MCS-031

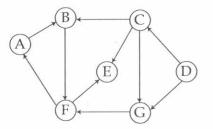
2

- (c) Define a Context-Free Grammar (CFG). 10Write a CFG for the following language.
 - (i) $L = \{a^m b^n : m > n, m, n \ge 0\}$
 - (ii) $L = \{\omega \omega^R : \omega \epsilon \{a, b\}^*\}$ where ω^R is a reverse of ω .
- 3. (a) What is "principle of optimality" in 10 Dynamic Programming ? Explain how dynamic programming can be used to solve a chain of matrix multiplication ? Apply Dynamic Programming to multiply the following (4) matrices. <M₁, M₂, M₃, M₄> with dimensions <(15, 3), (3, 8), (8, 9), (9, 7)>.
 - (b) Write an algorithm for Quick Sort. Analyse 10 the Running time of Quick Sort in Best and worst case.
- 4. (a) Use Kruskal's algorithm to construct a 5 minimum spanning tree from the following graph.

MCS-031

(b) Define O/I Knapsack Problem. Using 10 Dynamic programming. Solve the following O/I Knapsack problem.

No. of objects n = 5,


Capacity of Knapsack, M=16

Weight	2	. 3	6	5	9
Profit	2	7	15	20	12

(c) Write an algorithm for Topological Sort.

5

- 5. (a) Sort the following elements using Heap Sort : 7
 47, 29, 82, 11, 48, 32, 28, 17, 65, 36
 Show each step, while creating a heap and processing a heap.
 - (b) Use breadth first search to traverse the 5 following graph by using C as the starting node.

(c) Write an algorithm to multiply given two 8 n-bit decimal number $X = x_{n-1} x_{n-2} \dots x_1 x_0$ and $Y = y_{n-1} y_{n-2} \dots y_0$, using Divide and Conguer method. Also analyse the time complexity of the algorithm used ?

MCS-031

4