CS-73

BACHELOR OF COMPUTER APPLICATIONS (PRE-REVISED) Term-End Examination June, 2013

CS-73 : THEORY OF COMPUTER SCIENCE

Time : 3 hoursMaximum Marks : 75

Note : *Question no.* **1** *is compulsory*. *Attempt any three from the rest.*

- (a) Construct a Deterministic Finite Automate 4 (DFA) that recognises the following language :
 L={w ∈ {a, b}* : w ends with either aa or bb}
 - (b) Draw an NDFA that accept all strings over 3 $\Sigma = \{0, 1\}$ containing 0101 as a substring.
 - Using pumping lemma of regular language, 5 show that the language L={aⁿ bⁿ} is not regular.
 - (d) Explain the chomsky classification of 5 grammar with the help of an example.
 - (e) Design a Turing Machine (TM) to reverse a 5 given string w to w^{R} over $\Sigma = \{a, b\}$

CS-73

P.T.O.

- (f) Define context Free grammar (CFG). Write 4 a CFG for the language : $L = \{a^n b^m c^m d^n :$ n, $m \ge 1\}$
- (g) Prove that the Union of two recursive 4 languages L_1 and L_2 is also recursive.
- (a) Obtain the DFA equivalent to the following 5 NFA.

- (b) Show that if L is regular, then the 5 complement of L (that is L') is also regular.
- (c) Prove that $L = \{a^i b^i c^i : i \ge 1\}$ is not a context 5 free language.
- (a) Construct a PDA to accepts language 5
 { (a, b)ⁿ : n≥1} by empty stack.
 - (b) Let G be the grammar 10
 - $S \rightarrow aB / bA$ $A \rightarrow a / aS / bAA$
 - $B \rightarrow b$ / bS / aBB

For string aaabbabbba find

- (i) Left most derivation
- (ii) Right most derivation
- (iii) Parse tree
- (iv) Is the grammar unambiguous ?

CS-73

2

- 4. (a) Design a TM over Σ = {a, b} with no more 5 than three states that accepts the language (a (a+b)*).
 - (b) Define the Chomsky Normal Form for 5 context free grammar (CFG). Is the following CFG is in CNF ? Justify your answer.

$$\begin{pmatrix} S \to AB \\ A \to BS/b \\ B \to SA/a \end{pmatrix}$$

- (c) Explain the concept of Universal Turing 5 Machine.
- 5. (a) Show that the function f(x, y) = x + y is 5 primitive recursive.
 - (b) Does Post Correspondence Problem (PCP) 5
 with following two list : A = (10, 011, 101)
 and B = (101, 11, 011) have a solution ?
 Justify your answer.
 - (c) Differentiate between Ω and θ notations 5 with the help of an example.

CS-73

3