07117

MCA (Revised)

Term-End Examination

June, 2012

MCS-013: DISCRETE MATHEMATICS

Time: 2 hours

Maximum Marks: 50

Note: Q. No. 1 is compulsory.

Attempt any three from the rest.

- 1. (a) Show that $pV \sim (p \land q)$ is a tautology.
 - (b) Prove the following equivalence 3 $\sim \forall x \ P(x) \equiv \exists x \sim P(x)$
 - (c) Use principle of mathematical induction to $\mathbf{3}$ prove that $n^3 n$ is divisible by 3.
 - (d) Write the output of following circuit. 3

(e) Let R be a relation on the set $A = \{1, 2, 3, 4\}$ such that aRb if and only if a + b > 5. Check if R is reflexive, symmetric, transitive.

1

- (f) How many permutations are there for the word ASSOCIATION ?
- (g) Three coins are tossed and number of heads are observed. Find the probability that
 - (i) at least one head appears
 - (ii) all heads or all tails appear.
- 2. (a) Prove De Morgan's laws using truth table. 3
 - (b) Present a Direct proof of the statement. **3** "Square of an odd integer is odd".
 - (c) Explain:
 - (i) Proof by contrapositive
 - (ii) Proof by contradiction with the help of suitable examples.
- **3.** (a) Write boolean equation for the following **4** circuit.

- (b) Reduce the following boolean equation to simplest form.
 - $(a \wedge b' \wedge c) \vee (a \wedge b' \wedge c') \vee (a' \wedge b \wedge c') \vee (a' \wedge b' \wedge c')$

2

(c) Write a short note on "Principal of Duality". 3

- 4. (a) Let A, B and C be three sets such that A∪B = A∪C. Does it imply B = C? Support your answer by suitable example.
 - (b) Prove $AX(B \cup C) = (AXB) \cup (AXC)$ 3
 - (c) Let $f(x) = x^2$ and g(x) = x + 7 2 Find fog (x) and gof (x).
 - (d) Let A be the set of natural nos. 1, 2, 3, 4....,

 Let R be a relation on A such that aRb if and only if a mod 5 = b mod 5. Prove that R is equivalence relation.
- 5. (a) In how many ways can a party of 9 people arrange themselves around a circular table?
 - (b) What is the sum of coefficients of all the terms in the expansion of $(a+b+c)^5$?

4

(c) In how many ways *r* distinct objects can be distributed into 5 different boxes with at least one box empty?