POST GRADUATE DIPLOMA IN ANALYTICAL CHEMISTRY (PGDAC)

Term-End Examination December, 2023

MCH-003: SPECTROSCOPIC METHODS

Time: 3 Hours Maximum Marks: 75

Note: Attempt any five questions. All questions carry equal marks.

- (a) Explain the term refraction with the help
 of a diagram and explain Snell's law.
 - (b) Draw normal modes of vibrations of a linear and angular triatomic molecule AB_2 schematically.
 - (c) Explain the term Index of Hydrogen Deficiency (IHD). Calculate the IHD for C_4H_4 and $C_5H_{16}O$.

- (a) Describe line spectrum, band spectrum and continuous spectrum. Draw their origin schematically.
 - (b) Write down the equation for Beer-Lambert's law, explaining all the terms. Write any *two* deviations observed in this law.
 - (c) What are monochromators? Describe the functioning of a monochromator. 5
- 3. (a) Write the wavelengh/wave number ranges of near IR, mid-IR and far-IR regions. What is the advantages of far-IR spectrometer?
 - (b) Write the *two* main issues in Raman spectroscopy. List the basic components of a Raman spectrometer.
 - (c) State Franck-Condon's principle. Describe in brief the non-radiative or radiative types of deactivation processes.
- 4. (a) Explain Stokes shift. Why does the fluorescence occur at longer wavelengths than absorption?

5.

6.

spectrometry.

(b)	Define fluorescence quenching. Write the
	Stern-Volmer equation and explain the
	terms involved in it. 5
(c)	How is fluorescence spectroscopy helpful in
	the qualitative and quantitative analysis of
	inorganic analytes? 5
(a)	Give any <i>five</i> salient features of analysis by
	flame photometry. 5
(b)	Describe the room temperature phosphorescence method in chemical analysis.
(c)	Name the parameters of atomic spectrum
(-)	and explain any <i>two</i> . 5
(a)	Discuss the role of flame atomizer and nebulizer in flame photometry. 5
(b)	Write the reasons of using argon as the plasma gas in all the types of plasma sources in AES.
	sources in AES.
(c)	Explain various types of interferences
	encountered in atomic fluorescence

5

7.	(a)	Write any <i>three</i> fuel-oxidant combination	tions
		commonly used in AAS. What is the re	ole of
		monochromator?	5

- (b) Write the precautions that should be observed while preparing samples for AAS and AES.
- (c) Write the application of AAS in the determination of cadmium in biological samples.
- 8. (a) Define chemical shift. Explain why tetramethyl silane is used as standard for chemical shift measurement.
 - (b) Explain why aprotic solvent is preferred for recording NMR spectra of organic compounds. Name any three commonly used organic solvents.
 - (c) What do you understand by fragmentation of organic molecules in mass spectrum?Explain the McLafferty rearrangement. 5