No. of Printed Pages : 4 MMT-002

M. Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) [M. Sc. (MACS)] Term-End Examination December, 2023 MMT-002 : LINEAR ALGEBRA

Time : $1\frac{1}{2}$ Hours

Maximum Marks : 25

Note : Question No. 5 is compulsory. Answer any three questions from Q. Nos. 1 to 4. Calculators are not allowed.

1. (a) Let T : $\mathbf{R}^3 \to \mathbf{R}^2$ be a linear transformation defined by :

$$T(x, y, z) = (3x + 2y - 4z, x - 5y + 3z)$$

Find the matrix of T relative to the bases $\{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$ or \mathbb{R}^3 and $\{(1, 0), (1, 1)\}$ of \mathbb{R}^2 .

P. T. O.

(b) Find the spectral decomposition of :

2. (a) Find the QR decomposition of A and hence find a least squares solution of the system Ax = b, where : 3

$$\mathbf{A} = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix} \text{ and } b = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}.$$

(b) Write all possible Jordan canonical forms of a 5×5 matrix having :

$$\big(t\!-\!2\big)^2\big(t\!-\!3\big)\big(t\!-\!4\big)$$

3. Find the singular value decomposition of : 5

$$A = \begin{bmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{bmatrix}$$

MMT-002

4. (a) Prove that if N is a non-zero nilpotent operator, then N is not diagonlizable. 2

(b) Check whether or not A =
$$\begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & -1 \\ -1 & -1 & 5 \end{bmatrix}$$
 is

unitarily diagonalizable. If it is, find a unitary matrix U such that U* AU is diagonal. If A is not unitarily diagonalizable, obtain the Schur decomposition of A. 3

- 5. Which of the following statements are true and which false ? Justify your answer with a short proof or a counter-example, whichever is appropriate : 2×5=10
 - (i) If two matrices have the same characteristic polynomial, they are similar.
 - (ii) An invertiable matrix must be positive definite.

- (iii) A and AA^t have the same rank for any matrix A.
- (iv) For every matrix S in M_n (**R**), there is an $n \times n$ orthogonal matrix O such that $O^t SO \in M_n(\mathbf{R})$ is upper triangular.
- (v) If N is a nilpotent matrix, then e^{N} is also nilpotent.

MMT-002