No. of Printed Pages : 10

MTE-12

BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination

December, 2023

MTE-12 : LINEAR PROGRAMMING

Time : 2 Hours

Maximum Marks : 50

Note: (i) Question No. 1 is compulsory.

(ii) Answer any **four** questions from question nos. **2** to **7**.

(iii) Use of calculator is not allowed.

 Which of the following statements are True and which are False ? Give a short proof or a counter-example in support of your answer :

 $5 \times 2 = 10$

 (i) Changes in the coefficients of the objective function can change the optimal values of variables.

- (ii) In the simplex method, the feasibility condition for the maximization and minimization problems are different.
- (iii) In a dual LPP, the number of variables in primal is less than the number of constraints in dual.
- (iv) Transportation problem can be solved using simplex method.
- (v) The addition of a constant to all elements of a payoff matrix in two person zero sum game cannot affect the optimal mix of strategies.

2.	(a)	Solve the following assignment problem	for
		profit maximization :	5

	А	В	С	D	Е
1	22	28	30	18	30
2	30	14	18	11	26
3	31	17	23	20	27
4	12	28	31	26	26
5	19	23	30	25	29

(b) Obtain the dual of the following LP problem : 5

Minimize :

$$Z = 6x_1 - x_2 + x_3$$

Subject to the constraints :

$$2x_1 - 3x_2 + x_3 \ge 5$$
$$4x_1 - 2x_2 \ge 7$$
$$x_1, x_2 \ge 0.$$

3. (a) Consider the transportation problem having the following cost and requirements table : 5

D	. •		•
1000	tin	0 t	nn
DES		au.	lUII

		Ι	Π	III	IV	Supply
	А	4	7	2	5	20
Source	В	3	4	6	3	40
	С	5	1	3	4	10
Demand		20	10	30	10	

Find the optimal cost of the transportation problem.

(b) Use the principles of dominance to reduce the size of the game and hence solve the game: 5

	Player B				
	7	11	8	15	
Player A	9	12	7	11	
	12	13	13	13	

P. T. O.

4. (a) Write the LPP formulation of the following transportation problem : 5

Destination

		D_1	D_2	D_3	Supply
	R_1	8	6	2	600
Sources	R_2	14	8	18	300
	\mathbf{R}_3	1	7	10	750
		650	500	500	-

(b) Solve the following game graphically : 5 Player B

Player A	4	4 2		
	3	1	5	

5. (a) Solve the following LPP graphically : 5 Minimize :

$$Z = 20x_1 + 20x_2$$

Subject to the constraints :

$$4x_1 + 5x_2 \ge 20$$

$$4x_1 + 2x_2 \ge 16$$

$$3x_1 + 2x_2 \ge 24$$

$$x_1, x_2 \ge 0.$$

[5]

(b) Find all values of *k* for which the vectors :

$$\begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0 \end{bmatrix} \text{ and } \begin{bmatrix} 2k\\-k\\2 \end{bmatrix} \text{ are linearly}$$

independent. 5

independent.

6. (a) Write the LPP formulation of the following assignment problem : 5

		Jobs		
		Ι	Π	III
	\mathbf{P}_1	1	8	1
Person	P_2	5	7	6
	P_3	3	5	4

(b) Show that the set :

$$\mathbf{S} = \left\{ \left(x, y \right) \colon x^2 + y^2 \ge \mathbf{1} \right\}$$

is not convex.

- (a) A firm produces three articles X, Y and Z 7. at a total cost of \mathbf{x} 4, \mathbf{x} 3 and \mathbf{x} 6 per item respectively. Total number of X and Z items produced daily should be at least 2 and number of Y and Z together be at least 5. The firm wants to minimize the cost. Formulate this as a LPP. 5
 - (b) Obtain the basic solution of the following linear system : $\mathbf{5}$

$$2x_1 + x_2 + x_3 = 3$$
$$x_1 + 2x_2 + x_3 = 6$$

 $\mathbf{5}$

MTE-12

स्नातक उपाधि कार्यक्रम (बी. डी. पी.) सत्रांत परीक्षा दिसम्बर, 2023 एम.टी.ई.-12 : रैखिक प्रोग्रामन समय : 2 घण्टे अधिकतम अंक : 50 नोट : (i) प्रश्न सं. 1 अनिवार्य है।

- (ii) प्रश्न सं. 2 से 7 तक से कोई **चार** प्रश्न कीजिए।
- (iii) कैल्कुलेटरों का प्रयोग करने की अनुमति नहीं है।
- निम्नलिखित कथनों में से कौन-से कथन सत्य और कौन-से असत्य हैं ? अपने उत्तर के पक्ष में एक संक्षिप्त उपपत्ति **या** प्रति-उदाहरण दीजिए : 5×2=10
 (i) उद्दश्य फलन में चरों के गुणांकों के बदलाव से

चरों के इष्टतम मानों में परिवर्तन हो सकता है।

- (ii) एकधा विधि में, अधिकतमीकरण और
 न्यूनतमीकरण समस्याओं के लिए सुसंगत प्रतिबंध भिन्न होते हैं।
- (iii) एक द्वैती LPP में, आद्य के चरों की संख्या द्वैती
 की व्यवरोधों की संख्या से कम होती है।
- (iv) परिवहन समस्या एकधा विधि से हल की जा सकती है।
- (v) एक शून्य योग द्विव्यक्ति खेल के भुगतान आव्यूह के सभी अवयवों में एक नियत जोड़ देने से युक्तियों का इष्टतम मिश्रण प्रभावित नहीं होता है।
- (क) लाभ अधिकतमीकरण के लिए निम्नलिखित नियतन समस्या हल कीजिए : 5

	А	В	С	D	Е
1	22	28	30	18	30
2	30	14	18	11	26
3	31	17	23	20	27
4	12	28	31	26	26
5	19	23	30	25	29

(ख)निम्नलिखित LP समस्या की द्वैती प्राप्त कीजिए :

न्यूनतमीकरण कोजिए :

$$Z = 6x_1 - x_2 + x_3$$

P. T. O.

 $\mathbf{5}$

[8]

जबकि :

$$\begin{array}{l} 2x_1 - 3x_2 + x_3 \geq 5 \\ \\ 4x_1 - 2x_2 \geq 7 \\ \\ x_1, x_2 \geq 0 \,. \end{array}$$

 (क) निम्नलिखित लागत और आवश्यकता वाली परिवहन समस्या लीजिए: 5

		गतंव्य				
		Ι	Π	III	IV	पूर्ति
	А	4	7	2	5	20
स्रोत	В	3	4	6	3	40
	С	5	1	3	4	10
माँ	ग	20	10	30	10	

परिवहन समस्या की इष्टतम लागत ज्ञात कीजिए। (ख) प्रमुखता नियम का प्रयोग करके निम्नलिखित खेल का आकार समानीत कीजिए और इस प्रकार खेल हल भी कीजिए : 5

	खिलाड़ी В						
	7	11	8	15			
खिलाड़ी A	9	12	7	11			
	12	13	13	13			

				गंतव्य	[
			D_1	D_2	D_3	पूर्ति
		\mathbf{R}_1	8	6	2	600
	स्रोत	$ m R_2$	14	8	18	300
		\mathbf{R}_3	1	7	10	750
			650	500	500	
(ख)	निम्नलि	खित खेल	त ग्राफीय	বিধি	से हल व	क्रीजिए :
						5

खिलाड़ी B खिलाड़ी A <u>4 2 2</u> <u>3 1 5</u> 5. (क) निम्नलिखित LPP को ग्राफीय विधि से हल कीजिए : 5

न्यूनतमीकरण कीजिए

 $Z = 20x_1 + 20x_2$

जबकि :

$$\begin{array}{l} 4x_1 + 5x_2 \geq 20 \\ 4x_1 + 2x_2 \geq 16 \\ 3x_1 + 2x_2 \geq 24 \\ x_1, x_2 \geq 0 \,. \end{array}$$

P. T. O.

(ख)
$$k$$
 के वे मान ज्ञात कीजिए जिनके लिए सदिश
 $\begin{bmatrix} 1\\0\\1\end{bmatrix}, \begin{bmatrix} 1\\-1\\0\end{bmatrix}$ और $\begin{bmatrix} 2k\\-k\\2\end{bmatrix}$ रैखिकत: स्वतंत्र हैं। 5

 (क) निम्नलिखित नियतन समस्या का LPP सूत्रीकरण लिखिए : 5

		जॉब
		<u> I II III </u>
		$egin{array}{ccccc} P_1 & 1 & 8 & 1 \ \hline a & P_2 & 5 & 7 & 6 \ P_3 & 3 & 5 & 4 \ \end{array}$
	(ख)	दर्शाइए कि समुच्चय $\mathbf{S} = \left\{ (x, y) : x^2 + y^2 \ge 1 \right\}$
		अवमुख नहीं है। 5
7.	(क)	एक फर्म तीन उत्पाद X, Y और Z बनाती है
		जिनकी लागत क्रमश: ₹ 4, ₹ 3 और ₹ 6 प्रति
		उत्पाद है। उत्पादों X और Z की कुल संख्या
		कम से कम 2 प्रतिदिन है और उत्पादों Y और
		Z की संख्या कम से कम 5 प्रतिदिन है। फर्म
		लागत का न्यूनतमीकरण करना चाहती है। इसे
		LPP में सूत्रित कीजिए। 5
	(ख)	निम्नलिखित रैखिक निकाय का आधारी हल ज्ञात
		कीजिए: 5

 $2x_1 + x_2 + x_3 = 3$ $x_1 + 2x_2 + x_3 = 6$

MTE-12