No. of Printed Pages : 4

MCS-013

M. C. A. (REVISED)/B. C. A. (REVISED) (MCA/BCA) Term-End Examination December, 2023 MCS-013 : DISCRETE MATHEMATICS

Time : 2 Hours Maximum Marks : 50

Note : Question No. 1 is compulsory. Attempt any three questions from the rest.

- 1. (a) Using truth table, show that : 2 $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$
 - (b) Prove that $\sqrt{2}$ is irrational. 2
 - (c) Find the Boolean expression for the output for the following circuit : 2

- Make Venn diagram for the following set of (d) expressions : $\mathbf{2}$
 - Ā (i)
 - $A\Delta B$ (Symmetric Difference) (ii)
- Find the domain for which the function (e) $f(x) = 3x^2 - 1$ and g(x) = 1 - 5x are equal.
- (f) In how many ways can a student choose 8 questions out of 10 questions in an exam? $\mathbf{2}$
- Prove the following : (g)

$$\sim (\exists_x \mathbf{P}(x)) \equiv \forall_x (\sim \mathbf{P}(x))$$

- (h) Let $f(x) = \frac{1}{r}$ and $g(x) = x^3 + 2$, where $x \in \mathbb{R}$. Find (f+g)(x) and (fg)(x). $\mathbf{2}$
- Use mathematical induction to prove : $\mathbf{2}$ (i) $1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$
- How many distinct three-letter words can (j) be formed from the letters of the word "MUST"? $\mathbf{2}$

2. (a) Let
$$A = R - \{3\}$$
 and $B = R - \{1\} : f : A \to B$,

defined by
$$f(x) = \frac{x-2}{x-3}$$
. Find f^{-1} . 5

(b) Write the contrapositive and converse of the following statement : 2

"if 2 + 2 = 5, then I am a Lion".

- (c) What is dual in a Boolean expression ?Explain the principle of duality with the help of an example.3
- 3. (a) Compare predicate and preposition logic.
 Give De Morgan's laws for both. Also, give suitable example for both.
 5
 - (b) Explain Pigeon hole principle with suitable example.5
- 4. (a) Let :

A =
$$\{a, b, c, d\}$$

B = $\{1, 2, 3\}$
and R = $\{(a, 2), (b, 1), (c, 2), (d, 1)\}$

Is R a function ? Explain.

 $\mathbf{2}$

- (b) Show that in any group of 30 people, we can always find 5 people who were born on the same day of the week.
- (c) Write short notes on any *two* of the following: 5
 - (i) Modus-Ponens
 - (ii) Disjunctive syllogism
 - (iii) Contrapositive
- 5. (a) Show that for integer greater than zero : 3

$$2^n >= n+1$$

- (b) Let A and B be two mutually exclusive events such that p(A) = 0.6 and p(B) = 0.3. What is the probability that : 2
 - (i) A does not occur ?
 - (ii) A and B both occur simultaneously ?
- (c) Reduce the following expression to the simpler form : 2

$$\mathbf{F}(a,b,c) = (a' \wedge b' \wedge c') \vee (a' \wedge b' \wedge c)$$

$$\lor (a \land b \land c')$$

3

(d) Prove that :

$${}^{n}\mathbf{C}_{r} + {}^{n}\mathbf{C}_{r-1} = {}^{n+1}\mathbf{C}_{r} \left(0 \le r \le n\right)$$

MCS-013