Ph.D. PROGRAMME IN MATHEMATICS (PHDMT)

Term-End Examination

December, 2022

RMT-102 : ANALYSIS

Time : 3 hours
Maximum Marks : 100
Note : Marks are indicated against each question or part thereof. Question No. 1 is compulsory. Attempt as many questions as you can from Questions No. 2 to 8. The total marks awarded will be 100.

1. Which of the following statements are true or false ? Justify you answer by giving a short proof of the statement which you think is true or by illustrating with counter example for the statements which are false. $5 \times 2=10$
(i) A countable union of closed sets in a metric space is closed.
(ii) The function f defined by

$$
f(x)= \begin{cases}1 & \text { for } x \neq 0 \\ 0 & \text { for } x=0\end{cases}
$$

is measurable.
(iii) If a function is differentiable at a point, then it is analytic.
(iv) If X is a normed linear space, $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ and $\|x\|=1=\|y\|$, then $\|x+y\| \leq 2$.
(v) The transformation $T(z)=\frac{a z+b}{c z+d}$ is a Mobius transformation only if ad - bc $\neq 0$.
2. (a) Consider $X=\mathbf{R}$ with Lebesgue measure m.

Let $1 \leq \mathrm{p} \leq \infty$. Then
(i) Define a norm on $\mathrm{L}^{\mathrm{p}}(\mathbf{R})$ which makes it a normed linear space. Are these spaces inner product spaces ? Justify your answer.
(ii) $1 \leq \mathrm{p}<\mathrm{r}<\infty$ and $\mathrm{E} \subset \mathbf{R}$ is a measurable set such that $m(E)<\infty$. Then show that $L^{r}(E) \subset L^{p}(\mathbf{R})$.
(b) Let X and Y be metric spaces. Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be continuous. Show that $f-(V)$ is open in X for every open set V in Y.
(c) State dominated convergence theorem. Use the theorem to find $\lim _{n \rightarrow \infty} \int f_{n}(x) d x$ when $\mathrm{f}_{\mathrm{n}}(\mathrm{x})=\frac{\sqrt{\mathrm{x}}}{1+\mathrm{n} \mathrm{x}^{3}}$.
3. (a) (i) Define the out measure m^{*} of a set $\mathrm{A} \subseteq \mathbf{R}$.
(ii) Find the outer measure of the following sets :

1. $\quad \mathrm{A}=[3,5] \cup\{\mathrm{x}: \mathrm{x}$ is a solution of the equation $\left.x^{2}+1=0\right\}$
2. $\quad \mathrm{B}=\{\mathrm{r}: \mathrm{r}$ is a rational number in $[0,1] \cup \mathbf{R} \backslash \mathbf{Q}$
(iii) If $\mathrm{E}_{1}, \mathrm{E}_{2} \subseteq \mathbf{R}$ such that $\mathrm{m} *\left(\mathrm{E}_{1}\right)<\infty$ and $\mathrm{m}^{*}\left(\mathrm{E}_{2}\right)<\infty$, then show that

$$
\mathrm{m}^{*}\left(\mathrm{E}_{1} \cup \mathrm{E}_{2}\right) \leq \mathrm{m} *\left(\mathrm{E}_{1}\right)+\mathrm{m} *\left(\mathrm{E}_{2}\right) .
$$

$$
1+3+3=7
$$

(b) Give examples of Banach algebras of which one is commutation and the other is not commutation. Justify you choice of examples. 4
(c) Give an example of a compact set in \mathbf{R} with
(i) Euclidean metric
(ii) Discrete metric

Justify your choice of examples.
3. (a) If $\mathrm{f} \in \mathrm{H}(\Omega)$ where Ω is a domain in \mathbf{C} and $Z_{0} \in \Omega$ such that $f^{\prime}\left(Z_{0}\right) \neq 0$, then show that f is conformal at Z_{0}.
(b) Define the terms : interior, closure and boundary of any subset of a metric space. Find the interior and closure of a subset A of \mathbf{R}^{2} where

$$
\mathrm{A}=\left\{(\mathrm{x}, \mathrm{y}) \in \mathbf{R}^{2}: \mathrm{x}^{2}+\mathrm{y}^{2}=9\right\}
$$

(c) When is a set $\mathrm{E} \subset \mathbf{R}$ Lebesgue measurable ? If E_{1} and E_{2} are measurable sets and $\mathrm{E}_{1} \cap \mathrm{E}_{2}=\phi$, then show that $\mathrm{E}_{1} \cup \mathrm{E}_{2}$ is measurable.
4. (a) Define a connected set in a metric space. Check whether the following sets are connected :
(i) $A=\left\{(x, y): x^{2}+y^{2}=4\right\}$
(ii)

$$
B=\{(x, y): x=0, y \geq 1\}
$$

Let E be a connected set in a metric space. If $\{\mathrm{A}, \mathrm{B}\}$ is a disconnection of X , show that either $\mathrm{E} \subseteq \mathrm{A}$ or $\mathrm{E} \subseteq \mathrm{B}$.
(b) State closed graph theorem. Show that the theorem may not hold if the normed linear spaces involved are not Banach spaces.
(c) Prove that every Mobius transformation $\mathrm{T}: \mathbf{C}_{\infty} \rightarrow \mathbf{C}_{\infty}$ has at most two fixed points in C_{∞}.
5. (a) Check the measurability and integrability of the following functions defined on \mathbf{R}. Justify your answer.

$$
\begin{align*}
\mathrm{f}(\mathrm{x}) & =2, \quad \mathrm{x}=1,2,3,4 \tag{i}\\
& =-1, \mathrm{x}=-1,-2,-3 \\
& =0, \quad \text { elsewhere }
\end{align*}
$$

(ii) $\mathrm{f}(\mathrm{x})=\mathrm{x}+\mathrm{e}^{\mathrm{x}}$
(iii) $\mathrm{f}(\mathrm{x})=\frac{5}{2}, \mathrm{x} \in[0,6]$
$=0$, elsewhere
(b) Suppose X is a compact metric space and Y is any metric space and $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is continuous. Prove that $f(x)$ is compact.
(c) Let $\mathrm{X}=\mathrm{C}[0,1]$, the space of all continuous functions on $[0,1]$. For $f \in X$, let

$$
\|f\|=\|f\|_{\infty}+f(1) .
$$

Check whether $\|\cdot\|$ defines a norm on X .
6. (a) (i) State Hahn-Banach Extension theorem.
(ii) Consider the linear space $\mathrm{X}=\mathbf{R}^{2}$ with $\|\cdot\|$, given by

$$
\|\mathbf{x}\|_{1}=\left|\mathrm{x}_{1}\right|+\left|\mathrm{x}_{2}\right|, \mathbf{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)
$$

Let G denote the subspace of \mathbf{R}^{2} given by

$$
G=\left\{\left(x_{1}, 0\right): x_{1} \in \mathbf{R}\right\}
$$

and f be the linear functional defined on G by

$$
\mathrm{f}\left(\mathrm{x}_{1}, 0\right)=\alpha \mathrm{x}, \alpha>0 .
$$

Show that $\tilde{\mathrm{f}}: \mathrm{X} \rightarrow \mathbf{R}$ defined by

$$
\tilde{\mathrm{f}}(\mathrm{x})=\alpha \mathrm{x}_{1}+\frac{\alpha}{2} \mathrm{x}_{2}, \mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \in \mathrm{X}
$$

is a Hahn-Banach extension of f to X . Find another extension of f to X. What is its implication on the Hahn-Banach Theorem?
(iii) Using Hahn-Banach theorem, prove the following result :
"Let X be a normed linear space over k and $\mathrm{a} \in \mathrm{X}$ be such that $\mathrm{a} \neq 0$. Then there exists a bounded linear functional on X such that

$$
\begin{aligned}
& f(a)=\|a\|,\|f\|=1 \\
& \|a\|=\operatorname{Sup}\left\{f(a): f \in X^{\prime}\right\},\|f\| \leq 1 .
\end{aligned}
$$

(b) Which of the following sets are closed in \mathbf{R}^{3} with respect to the standard metric ? Justify.
(i) $\mathrm{A}=\left\{(\mathrm{x}, \mathrm{y}) \in \mathbf{R}^{2}: \mathrm{xy}=0\right\}$
(ii) $\mathrm{B}=\left\{(\mathrm{x}, \mathrm{y}) \in \mathbf{R}^{2}: \mathrm{x}^{2}+\mathrm{y}^{2}<1\right\}$
(c) Consider a linear operator $\mathrm{T}: \mathrm{L}^{1}[0,1] \rightarrow \mathbf{R}$ defined by $T(f)=\int_{0}^{1} t f(t) d t, f \in L^{1}\left[\begin{array}{ll}0, & 1\end{array}\right]$.
Show that T is a bounded linear operation on $L^{1}[0,1]$.
7. (a) If φ and ζ are two simple functions, then show that
(i) $\int_{\mathrm{E}} \varphi \mathrm{dm} \leq \int_{\mathrm{E}} \zeta \mathrm{dm}$
(ii) $\int_{A \cup B} \varphi d m=\int_{A} \varphi d m+\int_{B} \varphi d m$
where A and B are disjoint measurable sets.
(b) Let $\mathrm{X}=\mathrm{C}[\mathrm{a}, \mathrm{b}]$. Define a function d on $\mathrm{X} \times \mathrm{X} \rightarrow \mathbf{R}$ by

$$
d(f, g)=\int_{a}^{b}|f(t)-g(t)| d t
$$

where $f, g \in X$. Show that d defines a metric on X . Does d define a metric on $\mathrm{R}[\mathrm{a}, \mathrm{b}]$, the set of Riemann integrable functions on [a, b] ? Justify your answer.
(c) Show that $\left\{u_{n}\right\}$, where $u_{n}=(0,0, \ldots 1,0,0 \ldots)$, 1 occurs at the $\mathrm{n}^{\text {th }}$ place, is an orthonormal set in l^{2}.
8. (a) (i) Show that a metric space is complete if and only if every Cauchy sequence in it has a convergent subsequence.
(ii) Check whether a discrete metric space is complete.
(b) If u and v are harmonic conjugate to each other in some domain, then show that u and v must be constant there.

