Ph.D. PROGRAMME IN MATHEMATICS
 Term-End Examination
 December, 2022

RMT-101: ALGEBRA

Time : 3 hours

Maximum Marks : 100
Note: (i) There are eight questions in this paper.
(ii) The eighth question is compulsory.
(iii) Do any six questions from question one to question seven.

1. (a) Let

$$
\mathrm{G}=\left\{\left.\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right] \in \mathrm{GL}_{2}(\mathbb{R}) \right\rvert\, \mathrm{ad}-\mathrm{bc}>0\right\}
$$

and

$$
S=\{z \in \mathbb{C} \mid \mathfrak{J}(z)>0\}
$$

where $\mathfrak{J}(\mathrm{z})$ denotes the imaginary part of a complex number z. Prove that G acts on S by

$$
\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \tag{7}\\
\mathrm{c} & \mathrm{~d}
\end{array}\right] \cdot \mathrm{z}=\frac{\mathrm{az}+\mathrm{b}}{\mathrm{cz}+\mathrm{d}} .
$$

(b) Prove that the set of all nilpotent elements in a commutative ring R is an ideal of R.
(c) Let R be a ring with unity that has no proper left ideals. Prove that R is a division ring.
2. (a) Let F be a field. Show that the action of $\mathrm{GL}_{\mathrm{n}}(\mathrm{F})$ on $\mathrm{F}^{\mathrm{n}} \backslash\{\mathbf{0}\}$ is transitive. If F_{q} is the finite field with q elements, find the cardinality of the orbit and the stabiliser of $v=(1,0, \ldots, 0)^{\mathrm{t}} \in \mathbb{F}_{\mathrm{q}}^{\mathrm{n}}$ under the action of left multiplication by the elements of $\mathrm{GL}_{2}\left(\mathbb{F}_{\mathrm{q}}\right) . \quad 9$
(b) Show by induction that,

$$
\left|G L_{n}\left(\mathbb{F}_{q}\right)\right|=q^{\frac{n(n-1)}{2}}\left(q^{n}-1\right)\left(q^{n-1}-1\right) \ldots(q-1)
$$

(c) If R is a ring and $a \in R$, then $J=\{r \in R \mid r a=0\}$ is a left ideal of R and $K=\{r \in R \mid a r=0\}$ is a right ideal of R.
3. (a) If a group G has conjugacy class with two elements, show that G has a proper, non-trivial, normal subgroup.
(b) Let R be a ring with identity and S be the ring of all $n \times n$ matrices over R. J is an ideal of S , if and only if J is the ring of all $\mathrm{n} \times \mathrm{n}$ matrices over an ideal I of R .
4. (a) Give an example of finite abelian groups G, $\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{~K}_{1}$ and K_{2} such that $\mathrm{G}=\mathrm{H}_{1} \times \mathrm{H}_{2}$ and $\mathrm{G}=\mathrm{K}_{1} \times \mathrm{K}_{2}$, but no H_{i} is isomorphic to any K_{i}.
(b) Let R be a ring with identity.

A matrix $\left(\mathrm{a}_{\mathrm{ij}}\right) \in \mathrm{Mat}_{\mathrm{n}} \mathrm{R}$ is said to be (upper) triangular $\Leftrightarrow a_{i j}=0$ for $\mathrm{j}<\mathrm{i}$; strictly triangular $\Leftrightarrow \mathrm{a}_{\mathrm{ij}}=0$ for $\mathrm{j} \leq \mathrm{i}$.
Show that the set T of all triangular matrices is a subring in $\mathrm{Mat}_{\mathrm{n}} \mathrm{R}$ and the set I of all strictly triangular matrices is an ideal in T . Show that $T / I \simeq \underbrace{R \times R \times \ldots R}_{n \text { times }}$.
(c) Let R be the ring of 2×2 matrices over a field F .
(i) Show that the centre of R consists of all the matrices of the form $\left(\begin{array}{ll}a & 0 \\ 0 & \mathrm{a}\end{array}\right)$.
(ii) Show that the centre of R is not an ideal.
What is the centre of R, if F is not a field, but a division ring?
5. (a) Find four different subgroups of S_{4} which are isomorphic to S_{3} and nine different subgroups of S_{4} isomorphic to S_{2}.
(b) Determine all the group homomorphisms $\phi: S_{3} \rightarrow \mathbb{R}$.
(c) Check whether we have an exact sequence of R-modules

$$
0 \rightarrow \mathrm{M}^{\prime \prime} \xrightarrow{\mathrm{f}} \mathrm{M} \xrightarrow{\mathrm{~g}} \mathrm{M}^{\prime} \rightarrow 0
$$

if we take;

$$
\begin{align*}
& R=\mathbb{Z}, M^{\prime \prime}=\mathbb{Z}, M=\mathbb{Q}, \tag{i}\\
& M^{\prime}=\{z \in \mathbb{C}| | z \mid=1\}, f(x)=x \text { and } \\
& g(x)=e^{2 \pi i x}
\end{align*}
$$

(ii) $\mathrm{R}=\mathbb{Z}, \mathrm{M}^{\prime \prime}=(1-\mathrm{x}) \mathbb{Z}[\mathrm{X}], \mathrm{M}=\mathbb{Z}[\mathrm{X}]$,

$$
\mathrm{M}^{\prime}=\mathbb{Z}, \mathrm{f}(\mathrm{p}(\mathrm{X}))=\mathrm{P}(\mathrm{X}) \text { and } \mathrm{g}: \mathrm{M} \rightarrow \mathrm{M}^{\prime}
$$

$$
\text { given by } g\left(\sum_{i=0}^{n} a_{i} X^{i}\right)=\left(\sum_{i=0}^{n} a_{i}\right)
$$

If any of the sequences is exact, check whether it is split exact. If it is split exact find a splitting. If you think it is not split exact, justify your answer.
6. (a) Let G be a group of odd order and let N be a normal subgroup of G with $|N|=5$. Show that N is contained in the centre of G .
(b) Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{A}$ be an R -module homomorphism such that $f f=f$. Show that

$$
\mathrm{A}=\operatorname{Ker} \mathrm{f} \oplus \operatorname{Im} \mathrm{f}
$$

(c) If G is a group and

$$
\mathrm{G} \simeq \mathrm{Z}_{6} \oplus \mathrm{Z}_{15} \oplus \mathrm{Z}_{21} \oplus \mathrm{Z}_{25}
$$

find the elementary divisors and invariant factors of G .
(d) Show that the additive group $\mathrm{Z}_{\mathrm{p}} \mathrm{n}, \mathrm{n} \in \mathbb{N}, \mathrm{p}$ a prime, cannot be written as the direct sum of two of its proper subgroups.
7. (a) Find the number of elements of order 5 in a group G of order 20.
(b) Prove that no group of order $\mathrm{p}^{2} \mathrm{q}$, where p and q are distinct primes, is simple,
(c) Suppose R is commutative ring with identity having the property whenever $r+s=1$ for $r, s \in R$, one of r or s is a unit. Then R is a local ring.
8. Which of the following statements are True and which are False. Give reasons for your answer. If you think a statement is false, give a counter example. If you think a statement is true give a short proof.

$$
10
$$

(a) If G is a group of order 11 and S is a set of 7 elements, there is no transitive action of G on S .
(b) Every solvable group is nilpotent.
(c) Every cyclic R-module is simple, where R is a commutative ring with unity.
(d) If A is a submodule of B, then B is Noetherian if A satisfies Ascending Chain Condition on its submodules.
(e) S_{3} is the direct product of two of its subgroups.

