No. of Printed Pages : 6

MCH-001

POST GRADUATE DIPLOMA IN

ANALYTICAL CHEMISTRY (PGDAC)

Term-End Examination

December, 2022

MCH-001 : BASIC ANALYTICAL CHEMISTRY

<i>Time : 3 Hours</i>	Maximum Marks : 75
100000	

Note: (i) Answer any five questions.

(ii) All questions carry equal marks.

- 1. (a) What are 'determinate errors' ? Write the sources of these errors. 5
 - (b) What is the significance of standard deviation ? How is it different from population standard deviation ? 5

- (c) Calculate the pH of a 5.0×10^{-3} M solution of hydrochloric acid. [Given mantissa of 50 is 6990. Report the result up to same number of significant figures as the conc. of HCl]. 5
- (a) What is the full form of SPM ? Write the procedure of measuring SPM.
 - (b) Write any *ten* precautions for the safe handling of glasswares. 5
 - (c) What is 'Suspended Particulate Matter'(SPM) ? How does it cause damage to human body ? How can it be controlled ? 5
- 3. (a) Explain turbidimetry and nephelometry. Comment on the accuracy of the results of these determinations.
 - (b) Explain null hypothesis. Describe how a null hypothesis is tested.
 - (c) Describe the Bronsted-Lowry's theory of acids and bases with the help of examples.

 $\mathbf{5}$

- 4. (a) What are 'Pseudo First Order Reaction' ? Illustrate with the help of an example. 5
 - (b) Identify the conjugate base amongst the products shown in the following equations: 5
 - (i) $NH_3 + H_2O \square NH_4^+ + OH^-$
 - (ii) $NH_3 + CH_3OH \square NH_4^+ + CH_3O^-$
 - (iii) $NH_2OH + H_2O \square HONH_3^+ + OH^-$
 - (iv) $CH_3COOH + H_2O \square H_3O^+ + CH_3COO^-$

(v) $CH_3COOH + HClO_4 \square CH_3COOH_2^+ + ClO_4^-$

(c) It is required to prepare buffer of pH 4.3.
For this purpose formic acid (pKa = 3.68), acetic acid (pKa = 4.74) and benzoic acid (pKa = 4.18) besides their salts are available. Which acid and its salt will you choose for the purpose ? Give reason. 5

5. (a) What is an indicator ? Explain indicator error. 5

- (b) Explain amphiprotic and non-ionisable solvents giving examples for each type. 5
- (c) Why the end point of the titration between a weak acid and weak base is not sharp ? Explain.
- 6. (a) Distinguish between the terms 'Iodimetry' and 'Iodometry'. Write the indicator used in each case.
 - (b) What are the essential requirements of a metallochromic indicator to be used in complexometric titrations?
 - (c) Describe the method of determining Zn (II) in presence of Mg (II) complexometrically.
- (a) How will you determine Br- volumetrically by Volhard's method ? Give details including calculations. 5

- (b) Explain, why it is necessary to wash the precipitate obtained, by a suitable wash liquid, before drying and weighing while gravimetrically. estimating Suggest suitable wash liquid for precipitates of :
 - (i) $BaSO_4$
 - (ii) CaC_2O_4
 - (iii) AgI

Give reason for your choice. 5

- Write any *five* advantages of using the (c) organic reagents as the precipitants in inorganic gravimetric analysis. 5
- (a) Differentiate between co-precipitation and 8. post-precipitation. How can coprecipitation be minimised? 5
 - (b) A sample was weighed 10 times; weight (in mg) obtained is as follows : 29.8, 29.7, 30.2, 30.1, 30.5, 28.8, 29.2, 29.5, 30.3 and 29.8 Calculate mean, median and mode. $\mathbf{5}$

[6]
---	----

(c)	Match the indicator	rs giv	en in Column A		
with the type of titration in Column B: 5					
	Column A		Column B		
(1)	Diphenylamine	(i)	Acid-base		
(2)	Eriochrome Black T	(ii)	Complexometric		
(3)	Dichlorofluorocein	(iii)	Precipitation (Fajan's method)		
(4)	Methyl Orange	(iv)	Precipitation (Mohr's method)		
(5)	Potassium Chromate	(v)	Redox		

MCH-001