MCA (Revised)

Term-End Examination
December, 2022

MCSE-004 : NUMERICAL AND STATISTICAL COMPUTING

Time : 3 hours
Maximum Marks : 100
Note: Question no. 1 is compulsory. Attempt any three questions from the rest. Use of calculator is allowed.

1. (a) Let $\mathrm{a}=0 \cdot 41, \mathrm{~b}=0.36$ and $\mathrm{c}=0.70$. Prove that $\frac{(a-b)}{c} \neq \frac{a}{c}-\frac{b}{c}$.
(b) Obtain the positive roots of the equation $x^{2}-1=0$ by using Regula-Falsi method.
(c) Solve the following system of equations using Gauss elimination method :

$$
\begin{aligned}
& 3 x+2 y+3 z=5 \\
& x+4 y+2 z=4 \\
& 2 x+4 y+8 z=8
\end{aligned}
$$

(d) Calculate the value of the integral $5 \cdot 2$
$\log \mathrm{x} d \mathrm{x}$ by using Trapezoidal rule.
(e) Solve the following initial value problem, using Euler's method :

$$
y^{\prime}=1+y^{2}, y(0)=1
$$

Find $\mathrm{y}(0 \cdot 8)$ taking $\mathrm{h}=0 \cdot 2$.
(f) Find the root of the equation $\mathrm{x} \cdot \mathrm{e}^{\mathrm{x}}=\cos \mathrm{x}$ using the Secant method, correct to four decimal places.
(g) Show that the moment generating function of a random variable X which is Chi-square distributed with v degrees of freedom is :

$$
\mathrm{M}(\mathrm{t})=(1-2 \mathrm{t})^{-v / 2}
$$

(h) Write short notes on the following :
(i) Acceptance - Rejection Method
(ii) Non-linear Regression
2. (a) Solve the following system of equations :

$$
\begin{aligned}
& 2 x_{1}-x_{2}+x_{3}=-1 \\
& x_{1}+2 x_{2}-x_{3}=6 \\
& x_{1}-x_{2}+2 x_{3}=-3
\end{aligned}
$$

by using Jacobi method. Perform four iterations.
(b) Compute the square root of ' 9 ' using Newton's method. How does the error behave?
(c) Evaluate the integral $I=\int_{0}^{1} \frac{d x}{1+x}$ using Gauss-Legendre three-point formula.
3. (a) Estimate the value of $f(2 \cdot 2)$ by using forward difference formula, determined from the following data :

x	$\mathrm{f}(\mathrm{x})$
1	$2 \cdot 105$
2	$2 \cdot 808$
3	$3 \cdot 614$
4	4.604
5	$5 \cdot 88$
6	7.451
7	$9 \cdot 467$
8	11.985

(b) Solve the initial value problem $10 y^{\prime}=x^{2}+y^{2}$ with $y(0)=1$ and $h=0 \cdot 1$ using the fourth order Runge-Kutta method. Also find $\mathrm{y}(0 \cdot 2)$ and $\mathrm{y}(0 \cdot 4)$.
4. (a) Given the following system of linear equations, determine the value of each of the variables using the LU decomposition method :

$$
\begin{aligned}
& 6 x-2 y=14 \\
& 9 x-y+z=21 \\
& 3 x-7 y+5 z=9
\end{aligned}
$$

(b) If $f(1)=-3, f(3)=9, f(4)=30$ and $f(6)=132$, find the Lagrange's interpolation polynomial $f(x)$. Also find the value of $f(x)$ when $x=5$.
5. (a) The following data is given for marks in Subject A and Subject B of a certain examination :

Subject A Subject B

Mean Marks	36	85
Standard Deviation	11	8

Given, the coefficient of correlation between Subject A and Subject B $= \pm 0.66$.
(i) Determine the two equations of regression.
(ii) Calculate the expected marks in Subject A, corresponding to 75 marks obtained in Subject B.
(b) Write short notes on the following :
(i) Normal Distribution
(ii) Poisson Distribution
(iii) Binomial Distribution
(iv) Chi-square Distribution
(c) Write formulae for the following :
(i) Composite Trapezoidal Rule
(ii) Composite Simpson's Rule
(iii) Simpson's $1 / 3^{\text {rd }}$ Rule
(iv) Simpson's 3/8 Rule

