MASTER OF COMPUTER

APPLICATION (MCA)

Term-End Examination
December, 2022

MCS-031 : DESIGN AND ANALYSIS OF ALGORITHMS

Time : 3 Hours
Maximum Marks : 100

Note : Question No. 1 is compulsory. Attempt any
three questions from the remaining questions.

1. (a) Explain limitations of Strassen's algorithm for matrix multiplication.
(b) Use mathematical induction to prove the following expression :

$$
\sum_{i=0}^{n} 2^{i}=2^{n+1}-1
$$

(c) Solve the following recurrence equations : 5

$$
\mathrm{T}(n)=2 \mathrm{~T}(n-1)+1
$$

such that $\mathrm{T}(1)=1$.
P.T. O.
(d) Multiply 2437×3516 using Karatsuba's multiplication method.
(e) Sort the following sequence of numbers using merge sort :

$$
15,10,13,9,12,17
$$

(f) Write Euclid's algorithm for finding GCD of two natural numbers m and n.
(g) Find minimum cost spanning tree (MST) for the following graph using Kruskal's algorithm :

(h) Construct a DFA for the following regular expression :

$$
(0+1)^{*}(00+11)(0+1)^{*}
$$

2. (a) Write Dijkstra's algorithm for shortest path. Use Dijkstra's algorithm to find the shortest path of all the nodes from starting node ' a ':

(b) Write selection sort algorithm. Use it to sort the list:

$$
90,42,41,120,60,50 .
$$

Calculate the complexity of the algorithm in best case and worst case.10
3. (a) Explain how Greedy approach is used to find the solution of fractional Knapsack problem.
(b) Illustrate heap sort algorithm on the following sequence :

$$
<10,5,12,25,2,8,13,7>
$$

Also find the time complexity of heap sort algorithm in the best case.
4. (a) Define regular languages. Write regular expression corresponding to the following languages over the alphabet $\Sigma=\{a, b\}: 10$
(i) All strings with even length.
(ii) All strings with odd number of a 's and even number of b 's
(b) Differentiate between NP-complete and NP-hard problems. Give example of each.
(c) Define Ω (Big-Omega) notation used for comparing two functions $f(x)$ and $g(x)$. Consider the following functions $f(x)$ and $h(x)$:

$$
\begin{aligned}
& f(x)=2 x^{3}+3 x^{2}+1 \\
& h(x)=2 x^{3}-3 x^{2}+2
\end{aligned}
$$

Show that:
(i) $f(x)=\Omega\left(x^{3}\right)$
(ii) $x^{2} \neq \Omega(h(x))$
5. (a) Design a polynomial time reduction from the Vertex Cover Problem (VCP) to the CLIQUE problem. 10
(b) If L_{1} and L_{2} are two context free languages, then prove that $L_{1} \cup L_{2}$ is also context free language. 5
(c) Design a Turing Machine (TM) for the following language : 5

$$
\mathrm{L}=\left\{a^{n} b^{n} c^{n}: n \geq 1\right\}
$$

