BACHELOR OF COMPUTER
APPLICATIONS (BCA) (REVISED)
Term-End Examination
December, 2022
BCS-054 : COMPUTER ORIENTED NUMERICAL TECHNIQUES

Time : 3 Hours
Maximum Marks : 100

Note: (i) Any calculator is allowed during examination.
(ii) Question No. 1 is compulsory. Attempt any three more from the next four questions.

1. (a) Solve the following system of equations using Gauss Elimination method :

$$
\begin{aligned}
2 x_{1}+8 x_{2}+2 x_{3} & =14 \\
x_{1}+6 x_{2}-x_{3} & =13 \\
2 x_{1}-x_{2}+2 x_{3} & =5
\end{aligned}
$$

(b) Solve the following system of equations by using Gauss-Seidel iteration method (perform two iterations) :

$$
\begin{aligned}
8 x-3 y+2 z & =20 \\
6 x+3 y+12 z & =35 \\
4 x+11 y-z & =33
\end{aligned}
$$

(c) Determine the value of $\sqrt{12}$ by NewtonRaphson method (perform 3 iterations), taking $x_{0}=3.5$, as initial estimate.
(d) Verify the relation $(1+\Delta)(1-\nabla)=1$, where Δ and ∇ are forward and backward differencing operators, respectively. 6
(e) Write Bessel's formula of numerical differentiation. Briefly discuss its application with suitable example. 6
(f) Using the Lagrange's interpolation method, find the interpolating polynomial that fits the data given below :

x_{k}	f_{k}
0	2
1	3
2	12
5	147

(g) Write Simpson's $\frac{1}{3}$ rule and use it to compute the integral of the function $f(x)$, the respective values of x and $f(x)$ are tabulated below :

x	$f(x)$
0	1
0.1	1.01
0.2	1.04
0.3	1.09
0.4	1.16
0.5	1.25
0.6	1.36
0.7	1.49
0.8	1.64
1.0	1.81
0.9	2.0

2. (a) Briefly discuss the terms accuracy, precision and significant digits with suitable example of each.
(b) Write formula for Gauss-Jacobi iterative method. Solve the following system of
equations using Gauss-Jacobi method (perform three iterations) :

$$
\begin{aligned}
-4 x_{1}+x_{2}+10 x_{3} & =21 \\
5 x_{1}-x_{2}+x_{3} & =14 \\
2 x_{1}+8 x_{2}-x_{3} & =-7
\end{aligned}
$$

(c) Write formula for the Secant method. Use it to perform three iterations for finding roots of the equation $x^{3}+4 x^{2}-10=0$ near $x=0$ and $x=1$ (compute upto two decimal places only).

7
3. (a) Verify the following : 6
(i) $\quad \Delta^{3} f(x)=0, \quad$ when $f(x)=x^{2}$
(ii) $\mathrm{E}^{n} f(x)=\mathrm{e}^{x+n h}$, where $f(x)=x^{2}$ (x varies with constant increment of h)
(b) Find the Newton's forward difference interpolating polynomial which agrees with the following data :

x	$f(x)$
1	10
2	19
3	40
4	79
5	142
6	235

Also, obtain the values of $f(x)$ at $x=1.5$.
(c) Find the Lagrange's interpolating polynomial for the following data :

x	$f(x)$
$\frac{1}{4}$	-1
$\frac{1}{3}$	2
1	7

4. (a) If $f(x)=\frac{1}{x}$, show that:

$$
f(a, b, c)=\frac{+1}{a b c}
$$

using divided difference table for $x=\{a, b, c\}$.
(b) Evaluate the integral $\mathrm{I}=\int_{0}^{1} \frac{d x}{\sqrt{1+x^{2}}}$ by Trapezoidal rule, divide the interval $[0,1]$ into 5 equal parts (compute upto 5 decimal places only).
(c) Use Euler's method to find the solution of the IVP given below :

$$
y^{\prime}=-2 t y^{2}, y(0)=1
$$

take the interval $[0,1]$ with step size $h=0.2$.
P.T. O.
5. (a) Using Runge-Kutta method of order 4, approximate y, when $x=0.1$ and $x=0.2$, given that $x=0$ when $y=1$ and $\frac{d y}{d x}=x+y$. (Take $h=0.1$).
(b) Differentiate between the following: 10
(i) Euler's method and modified/improved Euler's method
(ii) Runge-Kutta method (order 2) and Runge-Kutta method (order 4)
Give advantage and disadvantage of each.

BCS-054

