2. Given the input-coefficient matrix :

 $\mathbf{A} = \begin{bmatrix} 0.2 & 0.3 & 0.2 \\ 0.4 & 0.1 & 0.2 \\ 0.1 & 0.3 & 0.2 \end{bmatrix}$

[2]

and the final demand vector :

$$\begin{bmatrix} 3 & 0 \\ 1 & 5 \\ 1 & 0 \end{bmatrix}.$$

- (a) Find the solution output levels of the three industries.
- (b) Check whether the system satisfies the Hawkins-Simon condition ?
- 3. (a) Compute the pure strategy Nash equilibrium in the following game :

Player 2

		Left	Right
Player 1	Up	2, 2	0, 3
	Down	3, 0	1, 1

No. of Printed Pages : 11 BECE-015

BACHELOR'S DEGREE PROGRAMME (BDP) Term-End Examination December, 2021

BECE-015 : ELEMENTARY MATHEMATICAL METHODS IN ECONOMICS

Time : 3 Hours Maximum Marks : 100

Note: Attempt questions from each Section as directed.

Section-A

- Note: Attempt any two questions from this Section. 20 each
- 1. Suppose the problem is :

Minimize :

 $\mathbf{C} = f\left(x_1, x_2, \dots, x_n\right)$

subject to :

$$g^i\left(x_1, x_2, \dots, x_n\right) \ge r_i$$

and $x_j \ge 0$ i = 1, 2, ..., m j = 1, 2, ..., n.

(a) Write out the expanded version of the Kuhn-Tucker minimum condition.

BECE-015

(b) Compute the mixed strategy Nash equilibrium of the following game :

[3]

4. (a) A two-product firm faces the following demand and cost functions :

$$Q_1 = 40 - 2P_1 - P_2$$
$$Q_2 = 35 - P_1 - P_2$$
$$C = Q_1^2 + 2Q_2^2 + 10$$

- (i) Find the output levels that satisfy the first-order conditions.
- (ii) What is the maximal profit ?
- (b) Maximize :

z = xy

Subject to :

x + 2y = 2.

[4] BECE-015

Section—B

Note : Answer any *four* questions from this Section.

 $4 \times 12 = 48$

- 5. Solve the following differential equations :
 - (a) $3y^2dy tdt = 0$
 - (b) 2tdy + ydt = 0
- 6. Use Cramer's rule to solve the following set of equations :

$$4x + 3y - 2z = 1$$
$$x + 2y = 6$$
$$3x + z = 4.$$

7. Determine the eigen values and eigen vectors of the matrix :

$$\mathbf{A} = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$$

- 8. Determine the distance between the points :
 - (a) (3, 0, 7) and (-4, 8, 2)
 - (b) (4, 6, 7, 1) and (-3, 0, 2, 4)
 - (c) The distance between the points (3, 1, 2, 4) and (4, 6, 5, λ) is 200. What can be said about the value of λ ?

- 9. Explain the relevant concept of equilibrium for static games of incomplete information and dynamic games of incomplete information.
- 10. Construct the average and marginal product function for x, which correspond to the production function :

 $q = x_1 x_2 - 0.2 x_1^2 - 0.8 x_2^2$

Let $x_2 = 10$. At what respective value of x_1 will the average product and marginal product of *x*, equal zero ?

Section-C

Note : Answer both the questions from this Section.

 $2 \times 6 = 12$

11. Evaluate :

(i) $\lim_{x \to 4} \frac{x^2 - 16}{4\sqrt{x} - 8}$ 3

(ii)
$$\lim_{x \to 2} \frac{x^4 - 4x^3 + 5x^2 - 4x + 4}{x^3 - 2x^2 - 4x + 8}$$
 3

- 12. (a) What are orthogonal vectors ? Explain. 3
 - (b) What is a determinant ? Does every matrix have a determinant? Give reasons. 3

[6] **BECE-015** स्नातक उपाधि कार्यक्रम (बी.डी.पी.) सत्रांत परीक्षा दिसम्बर. 2021 बी.ई.सी.ई.-015 : अर्थशास्त्र में प्रारम्भिक गणितीय प्रविधियाँ -

समय : 3 घण्टे	अधिकतम अंक : 100			
नोट : प्रत्येक भाग से निर्देशानसार प्रश्न हल कीजिए।				
भाग–क				
नोट : इस भाग से कोई दो प्रश्न	हल कोजिए। प्रत्येक 20			
1. मान लीजिए समस्या है :				
न्यनतम :				
$\mathrm{C}=f\left(x_{1},x_{2}, ight.$ बशार्ते कि :	\ldots, x_n)			

$$g^{i}\left(x_{1},x_{2},...,x_{n}
ight)\geq r_{i}$$

और $x_{j}\geq0$ $i=1,2,...,m$ $j=1,2,...,n$ ।

	[7] BECE-015	[8] BECE-015
	(क) कहन-टकर न्यनतम शर्त का विस्तारित रूप	3. (क) निम्नलिखित गेम में विशद्ध कार्यनीति नैश संतलन
	लिखिए।	को परिकलित कोजिए :
(ख) समस्या के द्रैत (dual) को लिखिए और द्रैत के लिए कहन-टकर शर्त को लिखिए। 2. आगत-गणांक आव्यह है :	(ख) समस्या के द्वैत (dual) को लिखिए और द्वैत के	खिलाडी 2
	बायें दायें	
	ऊपर 2,2 0,3 खिलाडी 1 नीचे 3,0 1,1	
	$\mathbf{A} = \begin{bmatrix} 0.2 & 0.3 & 0.2 \\ 0.4 & 0.1 & 0.2 \\ 0.1 & 0.3 & 0.2 \end{bmatrix}$	(ख) निम्नलिखित खेल में मिश्रित कार्यनीति नैश संतलन को परिकलित कीजिए :
	और अंतिम मॉॅंग सदिश (vector) है :	खिलाडी 2
	$\begin{bmatrix} 3 & 0 \\ 1 & 5 \\ 1 & 0 \end{bmatrix}$	L C R U 0,0 -5,-5 1,-1 खिलाडी 1 M 5,-5 0,0 -2,2
	(क) इन तीन उद्योगों के समाधान उत्पादन स्तरों का	D _1, 1 2, -2 0, 0
	पता लगाइए।	4. (क) कोई द्रि-उत्पाद फर्म निम्नलिखित मॉॅंग और लागत
(ख) जाँच कीजिए कि क्या यह प्रणाली हॉकिन्स-साइमन शर्त को संतष्ट करती है ?	फलनों का सामना करती है :	
		$Q_1 = 40 - 2P_1 - P_2$
	हा।फन्त−ताइनन रात का सतप्ट करता ह ?	$Q_2 = 35 - P_1 - P_2$ $Q_2 = 20^2 + 20^2 + 10$
		$C = Q_1^2 + 2Q_2^2 + 10$

P. T. O.

 $\mathbf{Z} = xy$

बशर्ते कि :

x + 2y = 2.

खण्ड–ख

नोट : इस भाग से किन्हीं चार प्रश्नों के उत्तर दीजिए ।

 $4 \times 12 = 48$

5. निम्नलिखित अवकल समीकरण हल कोजिए :

(क)
$$3y^2dy - tdt = 0$$

(ख) 2tdy + ydt = 0

 क्रेमर नियम द्वारा निम्नलिखित समीकरणों को हल कीजिए :

$$4x + 3y - 2z = 1$$
$$x + 2y = 6$$
$$3x + z = 4.$$

 निम्नलिखित आव्यह के आइगेन मल्य तथा आइगेन सदिश ज्ञात कीजिए :

 $\mathbf{A} = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$

- 8. निम्नलिखित बिन्दओं के बीच दरी निर्धारित कीजिए :
 - (क) (3, 0, 7) और (- 4, 8, 2)
 - (ख) (4, 6, 7, 1) और (- 3, 0, 2, 4)
 - (ग) बिन्द (3, 1, 2, 4) और बिन्द (4, 6, 5, λ)
 के बीच दरी 200 है। λ के मल्य के बारे में
 क्या कहा जा सकता है ?
- असंपर्ण सचना वाले गतिहीन गेम तथा असंपर्ण सचना वाले गतिक गेम से संबंधित उचित संतलन की संकल्पना को समझाइए।
- इस उत्पादन फलन के लिए x₁ के औसत और सीमांत उत्पाद फलनों की रचना कीजिए :

 $q = x_1 x_2 - 0.2 x_1^2 - 0.8 x_2^2$

मान लीजिए $x_2 = 10. x_1$ के किन मानों पर इसके औसत उत्पाद और सीमांत उत्पाद शन्य होंगे ?

[10]

भाग—ग

नोट : इस भाग के दोनों प्रश्नों के उत्तर दीजिए।

2×6=12

11. ज्ञात कीजिए : 3 + 3

(i)
$$\lim_{x \to 4} \frac{x^2 - 16}{4\sqrt{x} - 8}$$

(ii) $\lim_{x \to 2} \frac{x^4 - 4x^3 + 5x^2 - 4x + 4}{x^3 - 2x^2 - 4x + 8}$
12. (क) ऑर्थोगोनल सदिश क्या हैं ? स्पष्ट कीजिए। 3
(ख) सारणिक क्या है ? क्या हर आव्यह का सारणिक
होता है ? कारण बताइए। 3

BECE-015