BECE-015

BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination
December, 2021
BECE-015 : ELEMENTARY MATHEMATICAL METHODS IN ECONOMICS

Time : 3 Hours
Maximum Marks : 100
Note : Attempt questions from each Section as directed.

Section-A

Note: Attempt any two questions from this Section.

20 each

1. Suppose the problem is:

Minimize :

$$
\mathrm{C}=f\left(x_{1}, x_{2}, \ldots \ldots \ldots . ., x_{n}\right)
$$

subject to :

$$
g^{i}\left(x_{1}, x_{2}, \ldots \ldots \ldots ., x_{n}\right) \geq r_{i}
$$

and $x_{j} \geq 0 \quad i=1,2, \ldots \ldots, m \quad j=1,2, \ldots ., n$.
(a) Write out the expanded version of the Kuhn-Tucker minimum condition.
(b) Write out the dual of the problem and write the Kuhn-Tucker condition of the dual.
2. Given the input-coefficient matrix :

$$
\mathrm{A}=\left[\begin{array}{lll}
0.2 & 0.3 & 0.2 \\
0.4 & 0.1 & 0.2 \\
0.1 & 0.3 & 0.2
\end{array}\right]
$$

and the final demand vector :

$$
\left[\begin{array}{ll}
3 & 0 \\
1 & 5 \\
1 & 0
\end{array}\right] .
$$

(a) Find the solution output levels of the three industries.
(b) Check whether the system satisfies the Hawkins-Simon condition?
3. (a) Compute the pure strategy Nash equilibrium in the following game :

Player 2

(b) Compute the mixed strategy Nash equilibrium of the following game :

Player 2

		L	C	R
	U	0, 0	$-5,-5$	1, - 1
Player 1	M	5, - 5	0, 0	-2, 2
	D	$-1,1$	$2,-2$	0, 0

4. (a) A two-product firm faces the following demand and cost functions :

$$
\begin{aligned}
& \mathrm{Q}_{1}=40-2 \mathrm{P}_{1}-\mathrm{P}_{2} \\
& \mathrm{Q}_{2}=35-\mathrm{P}_{1}-\mathrm{P}_{2} \\
& \mathrm{C}=\mathrm{Q}_{1}^{2}+2 \mathrm{Q}_{2}^{2}+10
\end{aligned}
$$

(i) Find the output levels that satisfy the first-order conditions.
(ii) What is the maximal profit?
(b) Maximize :

$$
z=x y
$$

Subject to :

$$
x+2 y=2
$$

Section-B

Note : Answer any four questions from this Section.

$$
4 \times 12=48
$$

5. Solve the following differential equations:
(a) $3 y^{2} d y-t d t=0$
(b) $2 t d y+y d t=0$
6. Use Cramer's rule to solve the following set of equations:

$$
\begin{array}{r}
4 x+3 y-2 z=1 \\
x+2 y=6 \\
3 x+z=4 .
\end{array}
$$

7. Determine the eigen values and eigen vectors of the matrix :

$$
\mathrm{A}=\left[\begin{array}{ll}
5 & 4 \\
1 & 2
\end{array}\right]
$$

8. Determine the distance between the points :
(a) $(3,0,7)$ and $(-4,8,2)$
(b) $(4,6,7,1)$ and $(-3,0,2,4)$
(c) The distance between the points $(3,1,2,4)$ and $(4,6,5, \lambda)$ is 200 . What can be said about the value of λ ?
9. Explain the relevant concept of equilibrium for static games of incomplete information and dynamic games of incomplete information.
10. Construct the average and marginal product function for x, which correspond to the production function :

$$
q=x_{1} x_{2}-0.2 x_{1}^{2}-0.8 x_{2}^{2}
$$

Let $x_{2}=10$. At what respective value of x_{1} will the average product and marginal product of x, equal zero?

Section-C

Note: Answer both the questions from this Section.

$$
2 \times 6=12
$$

11. Evaluate :
(i) $\lim _{x \rightarrow 4} \frac{x^{2}-16}{4 \sqrt{x}-8}$
(ii) $\lim _{x \rightarrow 2} \frac{x^{4}-4 x^{3}+5 x^{2}-4 x+4}{x^{3}-2 x^{2}-4 x+8}$
12. (a) What are orthogonal vectors ? Explain. 3
(b) What is a determinant? Does every matrix have a determinant? Give reasons.

BECE-015

स्नातक उपाधि कार्यक्रम (बी.डी.पी.)

> सत्रांत परीक्षा

दिसम्बर 2021
बी.f.सी.ड.-015 : अर्थशास्त्र में प्रारस्भिक गणितीय

प्रविधियाँ

समय : 3 घण्टे
अधिकतम अंक : 100
नोट : प्रत्येक भाग से निर्देशानसार प्रश्न हल कीजिए।

भाग-क

नोट : इस भाग से कोई दो प्रश्न हल कीजिए। प्रत्येक 20

1. मान लीजिए समस्या है :

न्यनतम :

$$
\mathrm{C}=f\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right)
$$

बशर्ते कि :

$$
\begin{aligned}
& g^{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \geq r_{i} \\
& \text { और } x_{j} \geq 0 \quad i=1,2, \ldots ., m \quad j=1,2, \ldots \ldots, n \text { । }
\end{aligned}
$$

(क) कहन-टकर न्यनतम शर्त का विस्तारित रूप लिखिए।
(ख) समस्या के द्वैत (dual) को लिखिए और द्वैत के लिए कहन-टकर शर्त को लिखिए।
2. आगत-गणांक आव्यह है :

$$
\mathrm{A}=\left[\begin{array}{lll}
0.2 & 0.3 & 0.2 \\
0.4 & 0.1 & 0.2 \\
0.1 & 0.3 & 0.2
\end{array}\right]
$$

और अंतिम माँग सदिश (vector) है :

$$
\left[\begin{array}{ll}
3 & 0 \\
1 & 5 \\
1 & 0
\end{array}\right]
$$

(क) इन तीन उद्योगों के समाधान उत्पादन स्तरों का पता लगाइए।
(ख) जाँच कीजिए कि क्या यह प्रणाली हॉकिन्स-साइमन शर्त को संतष्ट करती है ?
3. (क) निम्नलिखित गेम में विशद्ध कार्यनीति नैश संतलन को परिकलित कीजिए :

	खिलाडी 2 बायें	
	दायें	
खिलाडी 1	ऊपर	2,2 0,3 3,0 1,1 नीचे

(ख) निम्नलिखित खेल में मिश्रित कार्यनीति नैश संतलन को परिकलित कीजिए :

खिलाडी 2

		L	C	R
खिलाडी 1	U	0, 0	$-5,-5$	1, -1
	M	5, -5	0, 0	-2, 2
	D	$-1,1$	$2,-2$	0, 0

4. (क) कोई द्वि-उत्पाद फर्म निम्नलिखित माँग और लागत फलनों का सामना करती है :

$$
\begin{gathered}
\mathrm{Q}_{1}=40-2 \mathrm{P}_{1}-\mathrm{P}_{2} \\
\mathrm{Q}_{2}=35-\mathrm{P}_{1}-\mathrm{P}_{2} \\
\mathrm{C}=\mathrm{Q}_{1}^{2}+2 \mathrm{Q}_{2}^{2}+10
\end{gathered}
$$

(i) प्रथम-कोटि स्थितियों (शर्तों) को संतष्ट करने वाले उत्पादन स्तरों का पता लगाइए।
(ii) उच्चिष्ठ लाभ क्या है ?
(ख) अधिकतम मल्य ज्ञात कीजिए :

$$
\mathrm{Z}=x y
$$

बशर्ते कि :

$$
x+2 y=2
$$

खण्ड-ख
नोट : इस भाग से किन्हीं चार प्रश्नों के उत्तर दीजिए ।

$$
4 \times 12=48
$$

5. निम्नलिखित अवकल समीकरण हल कीजिए :
(क) $3 y^{2} d y-t d t=0$
(ख) $2 t d y+y d t=0$
6. क्रेमर नियम द्वारा निम्नलिखित समीकरणों को हल कीजिए :

$$
\begin{array}{r}
4 x+3 y-2 z=1 \\
x+2 y=6 \\
3 x+z=4
\end{array}
$$

7. निम्नलिखित आव्यह के आइगेन मल्य तथा आइगेन सदिश ज्ञात कीजिए :

$$
\mathrm{A}=\left[\begin{array}{ll}
5 & 4 \\
1 & 2
\end{array}\right]
$$

8. निम्नलिखित बिन्दओं के बीच दरी निर्धारित कीजिए :
(क) $(3,0,7)$ और $(-4,8,2)$
(ख) $(4,6,7,1)$ और $(-3,0,2,4)$
(ग) बिन्द $(3,1,2,4)$ और बिन्द $(4,6,5, \lambda)$ के बीच दरी 200 है। λ के मल्य के बारे में क्या कहा जा सकता है ?
9. असंपर्ण सचना वाले गतिहीन गेम तथा असंपर्ण सचना वाले गतिक गेम से संबंधित उचित संतलन की संकल्पना को समझाइए।
10. इस उत्पादन फलन के लिए x_{1} के औसत और सीमांत उत्पाद फलनों की रचना कीजिए :

$$
q=x_{1} x_{2}-0.2 x_{1}^{2}-0.8 x_{2}^{2}
$$

मान लीजिए $x_{2}=10 . x_{1}$ के किन मानों पर इसके औसत उत्पाद और सीमांत उत्पाद शन्य होंगे ?

नोट : इस भाग के दोनों प्रश्नों के उत्तर दीजिए।
11. ज्ञात कीजिए :

$$
2 \times 6=12
$$

(i) $\lim _{x \rightarrow 4} \frac{x^{2}-16}{4 \sqrt{x}-8}$
(ii) $\lim _{x \rightarrow 2} \frac{x^{4}-4 x^{3}+5 x^{2}-4 x+4}{x^{3}-2 x^{2}-4 x+8}$
12. (क) ऑर्थोगोनल सदिश क्या हैं ? स्पष्ट कीजिए। 3
(ख) सारणिक क्या है ? क्या हर आव्यह का सारणिक होता है ? कारण बताइए। 3

