No．of Printed Pages ： 27 CHE－01／CHE－02

BACHELOR OF SCIENCE（B．Sc．）

Term－End Examination

December， 2021

CHEMISTRY

CHE－01 ：ATOMS AND MOLECULES
AND
CHE－02 ：INORGANIC CHEMISTRY
Time： 3 Hours
Maximum Marks ： 75

Instructions ：
（i）Students registered for both CHE－01 and CHE－02 courses should answer both the question papers in two separate answer books entering their enrolment number，course code and course title clearly on both the answer books．
（ii）Student who have registered for CHE－01 or CHE－02 should answer the relevant question paper after entering their enrolment number， course code and course title on the answer book．

CHE－01／CHE－02

विजान स्नातक（बी．एस सी．）

सत्रांत परीक्षा．दिसम्बर 2021
रसायन विजान
सी．एच．र्ड．－01 ：परमाण और अण
एवं
सी．एच．र्ड．－02 ：अकार्बनिक रसायन
समय ： 3 घण्टं
अधिकतम अंक ： 75

निर्देश ：

（i）जो छात्र सी．एच．ड़．－01 और सी．एच．ड़．－02 दोनों पाठयक्रमों के लिए पंजीकत हैं．दोनों प्रश्न－पत्रों के उत्तर अलग－अलग उत्तर पस्तिकाओं में अपना अनक्रमांक．पाठयक्रम कोड तथा पाठयक्रम नाम साफ－साफ लिखकर दें।
（ii）जो छात्र सी．एच．⿳े़．－01 या सी．एच．⿳亠़口．－02 किसी एक के लिए पंजीकत हैं अपने उसी प्रश्न－पत्र के उत्तर． उत्तर－पस्तिका में अपना अनक्रमांक．पाठयक्रम कोड तथा पाठयक्रम नाम साफ－साफ लिखकर दें।

CHE-01

BACHELOR OF SCIENCE (B. Sc.)

Term-End Examination

December, 2021

CHE-01 : ATOMS AND MOLECULES
Time : 1 Hour
Maximum Marks : 25

Note: (i) Answer all the five questions.
(ii) Use the following data wherever required:

Velocity of light, $c=2.998 \times 10^{8} \mathrm{~ms}^{-1}$.

1. Answer any two of the following parts : $2 \times 1=2$
(a) Write the electronic configuration of Cr atom. (At. No. of $\mathrm{Cr}=24$).
(b) Identify the type of hybridisation for each of the carbon in $\mathrm{CH}_{3} \mathrm{COOH}$.
(c) Indicate the number of neutrons and protons in ${ }_{78}^{194} \mathrm{Pt}$.
2. Answer any two of the following parts : $2 \times 2=4$
(a) Calculate the radius of the second orbit in hydrogen atom.
(b) Which of the following two will absorb at higher wave number in IR spectrum and why?

$$
\stackrel{\mid}{-\mathrm{C}}=\mathrm{C}-\text { or }-\mathrm{C} \equiv \mathrm{C}-
$$

(c) What is the significance of the magnetic quantum number? What is the value of the magnetic quantum number of a $2 s$ orbital?
3. Answer any two of the following parts : $2 \times 3=6$
(a) Predict the shape of ClO_{3}^{-}ion using the VSEPR theory.
(b) (i) PCl_{5} is formed easily but not NCl_{5}. Explain.
(ii) Draw the resonance structures of nitrate ion.
(c) Write molecular configuration for O_{2}^{-}ion. Calculate its bond order and also comment on its magnetic behaviour.
4. Answer any two of the following parts : $2 \times 4=8$
(a) Explain the following :
(i) Reduced mass
(ii) Radioactive dating
(b) (i) Draw the enantiomers of $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}$.
(ii) Define magnetic induction. How are various substances classified on the basis of their magnetic induction?
(c) (i) Predict the coordination number of Ca^{2+} ion in CaO , if ionic radii of $\mathrm{Ca}^{2+}=99 \mathrm{pm}$ and $\mathrm{O}^{2-}=140 \mathrm{pm}$.
(ii) Draw the radial probability density curves for $1 s$ and $2 s$ orbitals.
5. Answer any one of the following parts :
(a) The lowest wave number absorption line in the rotational spectrum of the molecule AB is $41.11 \mathrm{~cm}^{-1}$: 5
(i) Calculate the corresponding frequency of absorption.
(ii) What are the rotational quantum numbers of the energy levels involved in this transition?
(iii) What is the value of the rotational constant (B) in m^{-1} ?
(iv) Calculate the bond length of the molecule $A B$, if its reduced mass and moment of intertia are $1.60 \times 10^{-27} \mathrm{~kg}$ and $1.36 \times 10^{-47} \mathrm{~kg} \mathrm{~m}^{2}$, respectively.
(b) (i) What are the limitations of the Bohr's theory?
(ii) Complete the following nuclear reactions:

2
(I) $\quad{ }_{6}^{14} \mathrm{C} \rightarrow{ }_{7}^{14} \mathrm{~N}+?$
(II) $\quad{ }_{90}^{232} \mathrm{Th} \rightarrow{ }_{88}^{228} \mathrm{Ra}+$?

Name the emitted particles.

CHE-01

विजान स्नातक (बी. एस-सी.)

सत्रांत परीक्षा

दिसम्बर. 2021

सी.एच.ड.-01 : परमाण और अण

समय : 1 घण्टा
अधिकतम अंक : 25

नोट : (i) सभी पाँच प्रश्नों के उत्तर दीजिए।
(ii) जहाँ अवश्यक हो, निम्नलिखित आँकडे का उपयोग कीजिए :

प्रकाश का वेग, $c=2.998 \times 10^{8} \mathrm{~ms}^{-1}$ ।

1. किन्हीं दो भागों के उत्तर दीजिए : $2 \times 1=2$
(क) Cr परमाण का इलेक्ट्रॉनिक विन्यास लिखिए। (Cr की परमाण संख्या $=24$ है)
(ख) $\mathrm{CH}_{3} \mathrm{COOH}$ में प्रत्येक कार्बन परमाण में संकरण
का प्रकार बताइए।
(ग) ${ }_{78}^{194} \mathrm{Pt}$ में न्यट्रॉनों और प्रोटॉनों की संख्या बताइए।
2. किन्हीं दो भागों के उत्तर दीजिए : $2 \times 2=4$
(क) हाइड्रोजन परमाण में द्वितीय कक्षा की त्रिज्या की गणना कीजिए।
(ख) निम्नलिखित दोनों में से कौन-सा अधिक तरंग संख्या पर अवशोषण करेगा और क्यों ?

(ग) चम्बकीय क्वांटम संख्या का क्या अभिप्राय है ?
$2 s$ कक्षक के लिए चम्बकीय क्वांटम संख्या का क्या मान होता है ?
3. किन्हीं दो भागों के उत्तर दीजिए :
(क) VSEPR सिद्धान्त का उपयोग करके ClO_{3}^{-}
आयन की आकति का पर्वानमान कीजिए।
(ख) (i) PCl_{5} आसानी से बन जाता है, परन्त NCl_{5} नहीं बनता। समझाइए।
(ii) नाइट्रेट आयन की अननाद संरचनाएँ बनाइए।
(ग) O_{2}^{-}आयन का अण कक्षक विन्यास लिखिए। इसके आबंध क्रम की गणना कीजिए और चबम्कीय व्यवहार पर टिप्पणी कीजिए।
4. किन्हीं दो भागों के उत्तर दीजिए :
$2 \times 4=8$
(क) निम्नलिखित की व्याख्या कीजिए :
(i) द्रव्यमान क्षति
(ii) रेडियोऐक्टिव दिनांकन
(ख) (i) $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}$ के इनैन्शियोमर्स बनाइए।
(ii) चम्बकीय प्रेरण को परिभाषित कीजिए। विभिन्न पदार्थों को चम्बकीय प्रेरण के आधार पर किस प्रकार से वर्गीकत करते हैं ?
(ग) (i) CaO में Ca^{2+} आयन की उपसहसंयोजी संख्या का पर्वनमान कीजिए, यदि Ca^{2+} की आयनिक त्रिज्या $=99 \mathrm{pm}$ और O^{2-} की $=$ 140 pm है।
(ii) $1 s$ और $2 s$ कक्षकों के लिए त्रिज्य प्रायिकता घनत्व को आरेखित कीजिए।
5. किसी एक भाग का उत्तर दीजिए :
(क) AB अण के घर्णन स्पेक्ट्रम में निम्नतम
तरंग संख्या अवशोषण रेखा $41.11 \mathrm{~cm}^{-1}$
पर है।
(i) समरूप अवशोषण आवत्ति का परिकलन
कीजिए।
(ii) इस संक्रमण में सम्मिलित ऊर्जा स्तरों की घर्णन क्वांटम संख्याएँ क्या हैं ?
(iii) m^{-1} में घर्णन स्थिरांक (B) का क्या मान है ?
(iv) AB अण की आबंध लम्बाई का परिकलन कीजिए, यदि इसका समानीत द्रव्यमान $=1.60 \times 10^{-27} \mathrm{~kg}$ और जडत्व आघर्ण $=1.36 \times 10^{-47} \mathrm{~kg} \mathrm{~m}^{2}$ हैं।
(ख) (i) बोहर के सिद्धान्त की क्या सीमाएँ हैं ? 3
(ii) निम्नलिखित नाभिकीय अभिक्रियाओं को पर्ण कीजिए :
(I) ${ }_{6}^{14} \mathrm{C} \rightarrow{ }_{7}^{14} \mathrm{~N}+$?
(II) ${ }_{90}^{232} \mathrm{Th} \rightarrow{ }_{88}^{228} \mathrm{Ra}+$?

उत्सर्जित कणों के नाम बताइए।

CHE-02

BACHELOR OF SCIENCE (B. Sc.)

Term-End Examination

December, 2021
CHE-02 : INORGANIC CHEMISTRY
Time : 2 Hours
Maximum Marks : 50
Note: (i) Answer all the five questions.
(ii) All questions carry equal marks.

1. Answer any ten of the following : $10 \times 1=10$
(a) What is the number of unpaired electrons in the ground state of an iron atom (At. no. of $\mathrm{Fe}=26$) ?
(b) Which of the following has the highest electronegativity?

$$
\mathrm{Be}, \mathrm{~B}, \mathrm{Li}, \mathrm{C}
$$

(c) Name the least abundant isotope of hydrogen.
(d) Which out of K^{+}and Ca^{2+} is a poor complexing agent?
(e) Out of $\mathrm{MgCO}_{3}, \mathrm{CaCO}_{3}$ and SrCO_{3}, which is thermally the most stable?
(f) Which one of the following is acidic in nature?

$$
\mathrm{B}(\mathrm{OH})_{3}, \mathrm{Al}(\mathrm{OH})_{3}, \mathrm{Ga}(\mathrm{OH})_{3}
$$

(g) Which compound of silicon is used as a dehydrating agent?
(h) What is the number of $\mathrm{P}-\mathrm{H}$ bonds in $\mathrm{H}_{3} \mathrm{PO}_{3}$?
(i) Which of the following has the lowest boiling point?

$$
\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S} \text { and } \mathrm{H}_{2} \mathrm{Se}
$$

(j) Which of the following is the weakest acid?
$\mathrm{HF}, \mathrm{HCl}, \mathrm{BHr}, \mathrm{HI}$
(k) What is the shape of XeF_{4} molecule ?
(1) Which one has a higher ionization energy, Ca or Zn ? (Atomic no. $\mathrm{Ca}=20, \mathrm{Zn}=30$)
(m) What is the reaction product of serium (Atomic no. 58) with fluorine?
(n) Write the chemical formula of potassium trioxalatoferrate(III).
(o) For extraction of which of the following metals is the Kroll's process used? titanium, copper, aluminium, zinc
2. Answer any five of the following : $2 \times 5=10$
(a) Name the different forms of hydrogen molecule. How do they differ from each other?
(b) Amongst $\mathrm{Mg}, \mathrm{C}, \mathrm{N}$ and Si , which one has the highest first ionization energy and which has the lowest?
(c) Which of the alkali metals forms the most stable complexes? Give reason.
(d) What is the basicity of boric acid? Explain.
(e) Why do halides and hydrides of beryllium polymerise?
(f) What are transition elements?
(g) Silicon tetrachloride is readily hydrolysed whereas carbon tetrachloride is inert to hydrolysis. Explain.
3. Answer any five of the following : $2 \times 5=10$
(a) Explain why NF_{3} is known but NF_{5} is not.
(b) Why is $\mathrm{H}_{2} \mathrm{~S}$ a stronger acid as compared to $\mathrm{H}_{2} \mathrm{O}$?
(c) Explain why halogens are good oxidizing agents.
(d) What are the products obtained when xenon tetrafluoride reacts with water?
(e) Explain why the metal gold (At. no. 79) is a solid whereas mercury (At. no. 80) is a liquid.
(f) Why are lanthanides and actinides called inner transition elements?
(g) Write the structures of geometrical isomers of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Br}_{2}\right]^{+}$.
4. (a) Complete any four of the following chemical equations (balancing not required) : $4 \times 1=4$
(i) $\mathrm{PCl}_{5}+\mathrm{ROH} \rightarrow$
(ii) $3 \mathrm{BCl}_{3}+3 \mathrm{NH}_{4} \mathrm{Cl} \rightarrow$
(iii) $3 \mathrm{SiF}_{4}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow$
(iv) $2 \mathrm{XeF}_{6}+\mathrm{SiO}_{2} \rightarrow$
(v) $2 \mathrm{ClO}_{2}+2 \mathrm{NaOH} \rightarrow$
(vi) $2 \mathrm{FeCl}_{3}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow$
(b) Answer any three of the following : $3 \times 2=6$
(i) Name and state which rule or principle is violated in the electron configuration $1 s^{2} 2 s^{2} 2 p_{x}^{2} 2 p_{y}^{1}$.
(ii) Explain why the second ionization energy of an atom is always higher than its first ionization energy.
(iii) Explain why alkali metals act as strong reducing agents.
(iv) Explain why MgSO_{4} is soluble in water but BaSO_{4} is not.
(v) Amongst $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{Se}$ and $\mathrm{H}_{2} \mathrm{Te}$ which one has the highest reducing power and which one has the largest bond angle?
5. Answer any two of the following : $5 \times 2=10$
(a) List four techniques employed for refining crude metals and discuss any one of them.
(b) Use valence bond theory to explain the fact that $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is paramagnetic whereas $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ is diamagnetic. (At. no. of $\mathrm{Fe}=26$)
(c) What is lanthanide contraction? What are its consequences? Explain.

CHE-02

विजान स्नातक (बी. एस-सी.)

सत्रांत परीक्षा

दिसम्बर. 2021
सी.एच.र्ड.-02 : अकार्बनिक रसायन

समय : 2 घण्टे
अधिकतम अंक : 50

नोट : (i) सभी पाँच प्रश्नों के उत्तर दीजिए।
(ii) सभी प्रश्नों के अंक समान हैं।

1. निम्नलिखित में से किन्हीं दस के उत्तर दीजिए :

$$
1 \times 10=10
$$

(क) आयरन परमाण (Fe का परमाण क्रमांक $=26$)
की मल अवस्था में अयग्मित इलेक्ट्रॉनों की संख्या क्या है ?
(ख) निम्नलिखित तत्वों में से कौन-से तत्व की विद्यत ऋणात्मकता उच्चतम है ?

$$
\mathrm{Be}, \mathrm{~B}, \mathrm{Li}, \mathrm{C}
$$

(ग) हाइड्रोजन के कौन-से समस्थानिक की प्रचरता सबसे कम है ?
(घ) K^{+}और Ca^{2+} में से कौन-सा दर्बल संकलन कारक है ?
(ङ) $\mathrm{MgCO}_{3}, \mathrm{CaCO}_{3}$ और SrCO_{3} में से कौन-सा ताप के प्रति सबसे अधिक स्थायी है ?
(च) निम्नलिखित में से कौन-सा अम्लीय प्रकति का है ?

$$
\mathrm{B}(\mathrm{OH})_{3}, \mathrm{Al}(\mathrm{OH})_{3}, \mathrm{Ga}(\mathrm{OH})_{3}
$$

(छ) सिलिकॉन का कौन-सा यौगिक निर्जलीकारक की तरह प्रयक्त होता है ?
(ज) $\mathrm{H}_{3} \mathrm{PO}_{3}$ में $\mathrm{P}-\mathrm{H}$ आबंधों की संख्या कितनी है ?
(झ) निम्नलिखित में से किसका क्वथनांक निम्नतम है ?
$\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}$ और $\mathrm{H}_{2} \mathrm{Se}$
(ज) निम्नलिखित में से कौन-सा दर्बलतम अम्ल है ?
$\mathrm{HF}, \mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}$
(ट) XeF_{4} की आकति क्या है ?
(ठ) किसकी आयनन ऊर्जा उच्चतर है, Ca अथवा Zn ? (परमाण क्रमांक $\mathrm{Ca}=20, \mathrm{Zn}=30$)
(ड) सीरियम (परमाण क्रमांक $=58$) की फ्लओरीन के साथ अभिक्रिया का उत्पाद क्या है ?
(ढ) पोटैशियम ट्राइऑक्सैलेटोफैरैट (III) का रासायनिक सत्र लिखिए।
(ण) निम्नलिखित में से किस धात के निष्कर्षण के लिए क्रॉल प्रक्रम का उपयोग किया जाता है ?

टाइटेनियम, कॉपर, एल्यमिनियम, जिंक
2. निम्नलिखित में से किन्हों पाँच के उत्तर लिखिए :

$$
2 \times 5=10
$$

(क) हाइड्रोजन अण के विभिन्न रूपों के नाम लिखिए। वे एक-दसरे से किस प्रकार भिन्न होते हैं ?
(ख) $\mathrm{Mg}, \mathrm{C}, \mathrm{N}$ और Si में किस तत्व की प्रथम आयनन ऊर्जा उच्चतम और किसकी निम्नतम होती है ?
(ग) क्षार धातओं में से कौन-सी धात सबसे अधिक स्थायी संकल बनाती है ? कारण बताइये।
(घ) बोरिक अम्ल की क्षारकता कितनी होती है ? स्पष्ट कीजिए।
(ङ) बेरिलियिम के हैलाइड और हाइड्राइड बहलहीकरण क्यों करते हैं ?
(च) संक्रमण तत्व क्या होते हैं ?
(छ) सिलिकॉन टेट्राक्लोराइड शीघ्रता से जलअपघटित हो जाता है, जबकि कार्बन टेट्राक्लोराइड जलअपघटन के प्रति निष्क्रिय होता है। स्पष्ट कीजिए।
3. निम्नलिखित में से किन्हीं पाँच के उत्तर लिखिए :

$$
2 \times 5=10
$$

(क) NF_{3} ज्ञात है, लेकिन NF_{5} ज्ञात नहीं है, स्पष्ट कीजिए।
(ख) $\mathrm{H}_{2} \mathrm{O}$ की तलना में $\mathrm{H}_{2} \mathrm{~S}$ प्रबल अम्ल क्यों है ?
(ग) स्पष्ट कीजिए कि हैलोजन अच्छे ऑक्सीकरण कारक क्यों होते हैं।
(घ) जीनॉन टेट्राफ्लओराइड की जल के साथ अभिक्रिया के उत्पाद क्या होते हैं ?
(ङ) स्पष्ट कीजिए कि गोल्ड धात (परमाण क्रमांक 79) ठोस क्यों होती है, जबकि मरकरी (परमाण क्रमांक 80) द्रव होता है।
(च) लैंथेनाइड और ऐक्टिनाइड आंतर संक्रमण तत्व क्यों कहलाते हैं ?
(छ) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Br}_{2}\right]^{+}$के ज्यामितीय समावयवों की संरचना आरेखित कीजिए।
4. (क) निम्नलिखित में से किन्हीं चार रासायनिक समीकरणों को पर्ण कीजिए (संतलित करने की आवश्यकता नहीं) : $4 \times 1=4$
(i) $\mathrm{PCl}_{5}+\mathrm{ROH} \rightarrow$
(ii) $3 \mathrm{BCl}_{3}+3 \mathrm{NH}_{4} \mathrm{Cl} \rightarrow$
(iii) $3 \mathrm{SiF}_{4}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow$
(iv) $2 \mathrm{XeF}_{6}+\mathrm{SiO}_{2} \rightarrow$
(v) $2 \mathrm{ClO}_{2}+2 \mathrm{NaOH} \rightarrow$
(vi) $2 \mathrm{FeCl}_{3}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow$
(ख) निम्नलिखित में से किन्हीं तीन के उत्तर दीजिए : $3 \times 2=6$
(i) $1 s^{2} 2 s^{2} 2 p_{x}^{2} 2 p_{y}^{1}$ इलेट्रॉनिक विन्यास में जिस नियम या सिद्धान्त का उल्लंघन होता है, उसका नाम लिखिए और उसका कथन कीजिए।
(ii) स्पष्ट कीजिए कि किसी परमाण की द्भितीय आयनन ऊर्जा उसकी प्रथम आयनन ऊर्जा से सदैव उच्चतर क्यों होती है।
(iii) स्पष्ट कीजिए कि क्षार धातएँ एक प्रबल अपचायक की भाँति व्यवहार क्यों करती हैं।
(iv) स्पष्ट कीजिए कि MgSO_{4} जल में विलेय क्यों होता है, जबकि BaSO_{4} जल में अविलेय होता है।
(v) $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{Se}$ और $\mathrm{H}_{2} \mathrm{Te}$ में से किसकी अपचयन क्षमता प्रबलतम होती है और किसका आबंध कोण सबसे बडा होता है ?
5. निम्नलिखित में से किन्हीं दो के उत्तर दीजिए :

$$
5 \times 2=10
$$

(क) अपरिष्कत धातओं के शोधन में प्रयोग होने वाली चार विधियों की सची बनाइए और उनमें से किसी एक की व्याख्या कीजिए।
(ख) संयोजकता आबंध सिद्धान्त के आधार पर इस तथ्य का स्पष्टीकरण कीजिए कि $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ अनचम्बकीय जबकि $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ प्रतिचम्बकीय क्यों होता है। (Fe का परमाण क्रमांक $=26$)
(ग) लैंथेनाइड संकचन क्या होता है ? इसके क्या परिणाम होते हैं ? स्पष्ट कीजिए।

