M. SC. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) (MACS)

Term-End Examination
December, 2020

MMTE-005 : CODING THEORY

Time : 2 Hours
Maximum Marks : 50

Note:(i) Answer any four questions from question no. 1 to 5.
(ii) Question No. 6 is compulsory.
(iii) Use of calculator is not allowed.

1. (a) Define and give an example each of the following :
(i) Generator matrix of a linear code,
(ii) Minimum weight of a linear code. Justify your choice of examples.
(b) Are the \mathbb{Z}_{4} linear codes with generator matrices :

$$
\begin{aligned}
& \mathrm{G}_{1}=\left[\begin{array}{llll}
1 & 0 & 2 & 1 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1
\end{array}\right] \\
& \mathrm{G}_{2}=\left[\begin{array}{llll}
0 & 2 & 3 & 3 \\
3 & 0 & 3 & 3 \\
0 & 1 & 3 & 3
\end{array}\right]
\end{aligned}
$$

monomially equivalent? Why, or why not?
2. (a) Check whether or not a [23, 12, 7] binary code is perfect.
(b) Give an example, with justification, of a QR code of length 7 over \mathbb{F}_{8}.
(c) Write the generator matrix of the binary $(7,4)$ cyclic code with generator polynomial $x^{3}+x+1$. Also find the parity check matrix of this code.
3. (a) Draw the Tanner graph of the code C with parity check matrix :
$\left[\begin{array}{llllllllll}1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0\end{array}\right]$

Does the graph contain a cycle ? Justify your answer.
(b) Show that the polynomial:

$$
f(x)=x^{3}+x+1
$$

is irreducible over \mathbb{F}_{2}. How many elements does $\frac{\mathbb{F}_{2}[x]}{\langle f(x)\rangle}$ have, and why? Further, find the inverse of $\alpha \in \frac{\mathbb{F}_{\alpha}[x]}{\langle f(x)\rangle}$, where α is a root of $f(x)$.
4. (a) Find the convolutional code for the message 11011, for the convolutional encoder given below :

(b) Let C be the narrow sense binary BCH code of designed distance $\delta=5$, which has a defining set $T=\{1,2,3,4,6,8,9,12\}$. Let α be a primitive 15 th root of unity, where
P. T. O.
$\alpha^{4}=1+\alpha, \quad$ and let the generator polynomial of C be :

$$
g(x)=1+x^{4}+x^{6}+x^{7}+x^{8}
$$

If $y(x)=x^{9}+x^{8}+x^{5}+x^{4}+x^{3}+1$
is received, find the transmitted code word. You can use the following table :

| 0000 | 0 | 1000 | α^{3} | 1011 | α^{7} | 1110 | α^{11} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0001 | 1 | 0011 | α^{4} | 0101 | α^{8} | 1111 | α^{12} |
| 0010 | α | 0110 | α^{5} | 1010 | α^{9} | 1101 | α^{13} |
| 0100 | α^{2} | 1100 | α^{6} | 0111 | α^{10} | 1001 | α^{14} |

5. (a) Let C be the [5, 2] binary code generated by $\left[\begin{array}{lllll}1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1\end{array}\right]$. Find the weight distribution of C. Find the weight distribution of C^{\perp} by using MacWilliams identity.
(b) Let C be any $\left[n, \frac{n-1}{2}\right]$ cycle code over \mathbb{F}_{q}. Prove that C is self-orthogonal if and only if C is an even-like duadic code whose splitting is given by μ_{-1}.
6. Which of the following statements are true, and which are false? Give reasons for your answers. Marks will only be given for valid reasons: 10
(i) If a code is self-orthogonal, it is self-dual.
(ii) If the syndrome of the received code word is zero, then there is no error in the transmission.
(iii) [10] generates a Reed-Muller code.
(iv) $\mathbb{F}_{2} \times \mathbb{F}_{3}$ is a finite field.
(v) The generator polynomial of a ReedSolomon code over \mathbb{F}_{q} splits into linear factors over \mathbb{F}_{q}.
