No. of Printed Pages : 5

MMTE-005

M. SC. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) (MACS)

Term-End Examination

December, 2020

MMTE-005 : CODING THEORY

Time : 2 Hours

Maximum Marks : 50

Note: (i) Answer any four questions from question no. 1 to 5.

(ii) Question No. 6 is compulsory.

(iii) Use of calculator is **not** allowed.

- (a) Define and give an example each of the following: 5
 - (i) Generator matrix of a linear code,
 - (ii) Minimum weight of a linear code.

Justify your choice of examples.

(b) Are the \mathbb{Z}_4 linear codes with generator matrices : 5

$$\mathbf{G}_1 = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}$$

and
$$\mathbf{G}_2 = \begin{bmatrix} 0 & 2 & 3 & 3 \\ 3 & 0 & 3 & 3 \\ 0 & 1 & 3 & 3 \end{bmatrix}$$

monomially equivalent? Why, or why not?

- 2. (a) Check whether or not a [23, 12, 7] binary code is perfect. 3
 - (b) Give an example, with justification, of a QR code of length 7 over \mathbb{F}_8 . 2
 - (c) Write the generator matrix of the binary (7, 4) cyclic code with generator polynomial $x^3 + x + 1$. Also find the parity check matrix of this code. 5
- 3. (a) Draw the Tanner graph of the code C with parity check matrix : 5

$\lceil 1 \rceil$	0	0	0	1	0	0	1	0	1^{-}
0	1	0	0	1	1	0	0	1	0
0	0	1	0	0	1	1	0	0	1
0	0	0	1	0	0	1	1	1	0

Does the graph contain a cycle ? Justify your answer.

(b) Show that the polynomial :

$$f(x) = x^3 + x + 1$$

is irreducible over \mathbb{F}_2 . How many elements

does
$$\frac{\mathbb{F}_2[x]}{\left\langle f(x) \right\rangle}$$
 have, and why ? Further, find

the inverse of $\alpha \in \frac{\mathbb{F}_{\alpha}[x]}{\langle f(x) \rangle}$, where α is a root

of
$$f(x)$$
. 5

4. (a) Find the convolutional code for the message 11011, for the convolutional encoder given below :

(b) Let C be the narrow sense binary BCH code of designed distance δ = 5, which has a defining set T = {1, 2, 3, 4, 6, 8, 9, 12}. Let α be a primitive 15th root of unity, where

P. T. O.

 $\alpha^4 = 1 + \alpha$, and let the generator

polynomial of C be : 6

$$g(x) = 1 + x^4 + x^6 + x^7 + x^8$$

If
$$y(x) = x^9 + x^8 + x^5 + x^4 + x^3 + 1$$

is received, find the transmitted code word. You can use the following table :

0000	0	1000	α^3	1011	α^7	1110	α^{11}
0001	1	0011	α^4	0101	α^8	1111	α^{12}
0010	α	0110	α^5	1010	α^9	1101	α^{13}
0100	α^2	1100	α^6	0111	α^{10}	1001	α^{14}

5. (a) Let C be the [5, 2] binary code generated
by
$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$
. Find the weight
distribution of C. Find the weight
distribution of C ^{\perp} by using MacWilliams
identity. 4

(b) Let C be any
$$\left[n, \frac{n-1}{2}\right]$$
 cycle code over \mathbb{F}_q .

Prove that C is self-orthogonal if and only if C is an even-like duadic code whose splitting is given by μ_{-1} . 6

[4]

- Which of the following statements are true, and which are false ? Give reasons for your answers. Marks will only be given for valid reasons : 10
 - (i) If a code is self-orthogonal, it is self-dual.
 - (ii) If the syndrome of the received code word is zero, then there is no error in the transmission.
 - (iii) [1 0] generates a Reed-Muller code.
 - (iv) $\mathbb{F}_2 \times \mathbb{F}_3$ is a finite field.
 - (v) The generator polynomial of a Reed-Solomon code over \mathbb{F}_q splits into linear factors over \mathbb{F}_q .